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ABSTRACT
Computational modelling is a promising approach to parse dysfunctional cognitive 
processes in substance use disorders (SUDs), but it is unclear how much these processes 
change during the recovery period. We assessed 1-year follow-up data on a sample 
of treatment-seeking individuals with one or more SUDs (alcohol, cannabis, sedatives, 
stimulants, hallucinogens, and/or opioids; N = 83) that were previously assessed at 
baseline within a prior computational modelling study. Relative to healthy controls (HCs; 
N = 48), these participants were found at baseline to show altered learning rates and 
less precise action selection while completing an explore-exploit decision-making task. 
Here we replicated these analyses when these individuals returned and re-performed 
the task 1 year later to assess the stability of baseline differences. We also examined 
whether baseline modelling measures could predict symptoms at follow-up. Bayesian 
and frequentist analyses indicated that: (a) group differences in learning rates were 
stable over time (posterior probability = 1); and (b) intra-class correlations (ICCs) between 
model parameters at baseline and follow-up were significant and ranged from small to 
moderate (.25 < ICCs < .54). Exploratory analyses also suggested that learning rates and/
or information-seeking values at baseline were associated with substance use severity 
at 1-year follow-up in stimulant and opioid users (.36 < rs < .43). These findings suggest 
that learning dysfunctions are moderately stable during recovery and could correspond to 
trait-like vulnerability factors. In addition, computational measures at baseline had some 
predictive value for changes in substance use severity over time and could be clinically 
informative.
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1. INTRODUCTION
Substance use disorders (SUDs) are among the most common, costly, and burdensome psychiatric 
conditions (NIMH, 2007; Suzuki & Kober, 2018). Despite considerable research to date (Everitt 
& Robbins, 2016; Valyan, Ekhtiari, Smith, & Paulus, 2020), understanding of the cognitive and 
neurobiological underpinnings of these conditions remains incomplete, with limited ability to 
inform treatment or predict symptom change over time. Computational modelling represents 
a promising approach for further elucidating the neural and cognitive mechanisms underlying 
SUDs. This approach can account for maladaptive perceptual, learning, and decision-making 
processes, as well as generate quantitative hypotheses at multiple levels of description. Several 
computational modelling and neuroimaging studies over the last two decades have found evidence 
that compulsive behavior patterns seen in SUDs are associated with a shift from so-called ‘model-
based’ (goal-directed) to ‘model-free’ (habitual) control (Donamayor, Strelchuk, Baek, Banca, & 
Voon, 2018; Everitt & Robbins, 2005, 2016; Obst et al., 2018; Reiter et al., 2016; Sebold et al., 2014; 
Sjoerds et al., 2013; Voon et al., 2015). Other modelling studies have also reported evidence of 
altered interoception (Smith, Kuplicki, et al., 2020) and altered approach-avoidance processes in 
SUDs (Smith, Kirlic, Stewart, Touthang, Kuplicki, Khalsa, et al., 2021; Smith, Kirlic, Stewart, Touthang, 
Kuplicki, McDermott, et al., 2021). These and other types of maladaptive behavior patterns have 
been linked to relapse as well as several other negative long-term outcomes (Passetti, Clark, 
Mehta, Joyce, & King, 2008; Verdejo-Garcia, Chong, Stout, Yucel, & London, 2018). As part of the 
broader field of computational psychiatry (Huys, Maia, & Frank, 2016), the goal of model-based 
studies has been to identify and measure differences in the information processing mechanisms 
that underlie such maladaptive patterns, and to examine if they can aid in assessing symptom 
severity, guiding treatment decisions, predicting treatment outcomes, and evaluating treatment 
progress, among others (Smith, Taylor, & Bilek, 2021).

This aim of computational psychiatry to inform personalized medicine approaches – via either 
treatment prediction or assessment of treatment progress – requires that computational measures 
provide reliable individual difference estimates over time. That is, measures of computational 
mechanisms should be consistent over time unless true mechanistic changes have occurred. If 
changes over time instead reflect random influences, their use as assessment tools will be limited 
(Nair, Rutledge, & Mason, 2020). To address this, the longitudinal stability of computational 
measures has been the topic of recent studies, with results ranging from poor to excellent 
estimates of reliability (Brown, Chen, Gillan, & Price, 2020; Chung et al., 2017; Enkavi et al., 2019; 
Hedge, Bompas, & Sumner, 2020; Moutoussis et al., 2018; Price, Brown, & Siegle, 2019; Shahar et 
al., 2019; Smith, Kirlic, Stewart, Touthang, Kuplicki, McDermott, et al., 2021). This highly variable 
pattern of results suggests that there may be significant measurement error and/or that the 
cognitive processes engaged during many tasks change with repeated performance (e.g., due to 
learning). Many commonly used computational tasks are also yet to be assessed for longitudinal 
stability, or for their ability to track or predict changes over time in clinically relevant variables (e.g., 
symptom levels, physiological states, etc.). There is thus a need for thorough assessment of the 
longitudinal reliability of a broader range of task measures within computational psychiatry and 
for further evaluation of their ability to capture information about states vs. traits.

In a recent paper studying SUDs (Smith, Schwartenbeck, et al., 2020), we used a computational 
modelling approach to analyze behavior on a commonly used three-armed bandit task (Zhang & 
Yu, 2013), which is designed to measure the balance between information-seeking and reward-
seeking during decision-making under uncertainty (i.e., solving the ‘explore-exploit dilemma’; 
(Addicott, Pearson, Sweitzer, Barack, & Platt, 2017)). This dataset included healthy controls (HCs; N 
= 54) and a community sample of individuals with one or more SUDs (alcohol, cannabis, sedatives, 
stimulants, hallucinogens, and/or opioids; N = 147). This was part of the Tulsa 1000 (T1000) project 
(Victor et al., 2018) – a naturalistic longitudinal study recruiting subjects based on the dimensional 
NIMH Research Domain Criteria framework (Insel et al., 2010). Computational modelling in that 
prior study provided evidence that, relative to HCs, substance users learned more slowly from 
losses and more quickly from wins. Substance users also showed less precise (less value-sensitive) 
decisions, corresponding to a behavioral tendency to change decision strategies despite prior 
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success. While these results suggested a mechanism whereby substance users may continue with 
maladaptive behavior (under uncertainty) despite negative consequences, the stability of these 
differences was not addressed. Namely, it was not clear whether these results reflected stable 
trait vulnerability factors, or were dependent on current psychological states, or whether they may 
track symptom changes over time.

Participants in the T1000 project were invited to return for a 1-year follow-up visit and asked 
to complete – among other assessments – the above-mentioned three-armed bandit task. This 
afforded the opportunity to (1) test the individual- and group-level stability of baseline results over 
time (i.e., whether/how computational phenotypes may change during the recovery process), and 
(2) examine whether baseline computational measures predict clinical differences at follow-up. 
This study reports the results of these analyses as a means of examining the clinical utility of this 
task/model as a potential clinical assessment tool.

2. METHODS
2.1 PARTICIPANTS

Participants represent a subset of those from our original baseline study (Smith, Schwartenbeck, 
et al., 2020) who agreed to return for a 1-year follow-up visit. In the baseline study, these 
participants were identified from the exploratory subsample (i.e., first 500 participants) of the 
T1000 project  (Victor et al., 2018), which recruited a community sample of subjects based 
on the dimensional NIMH Research Domain Criteria framework. The T1000 study included 
individuals 18–55 years old, screened on the basis of dimensional psychopathology scores: 
Drug Abuse Screening Test (DAST-10 (Bohn, Babor, & Kranzler, 1991)) score > 3, Patient Health 
Questionnaire (PHQ-9 (Kroenke, Spitzer, & Williams, 2001)) ≥ 10, and/or Overall Anxiety Severity 
and Impairment Scale (OASIS (Norman, Hami Cissell, Means‐Christensen, & Stein, 2006)) ≥ 8. HCs 
did not have psychiatric diagnoses or show elevated symptoms. Participants were excluded if 
they: (a) tested positive for drugs of abuse via urine screen, (b) met criteria for psychotic, bipolar, 
or obsessive-compulsive disorders, or (c) reported history of moderate-to-severe traumatic brain 
injury, neurological disorders, severe or unstable medical conditions, active suicidal intent or 
plan, or change in medication dose within 6 weeks. See (Victor et al., 2018) for a more complete 
description of inclusion/exclusion criteria. The study was approved by the Western Institutional 
Review Board. All participants provided written informed consent prior to completion of the study 
protocol, in accordance with the Declaration of Helsinki, and were compensated for participation. 
ClinicalTrials.gov identifier: #NCT02450240.

After baseline screening, participants were grouped based on DSM-IV-TR or DSM-5 diagnosis using 
the Mini International Neuropsychiatric Inventory (MINI version 6.0 or 7.0) (D. Sheehan et al., 2015; 
D. V. Sheehan & Lecrubier, 2010; D. V. Sheehan et al., 1998). In our baseline study, we focused 
on treatment-seeking individuals with SUDs (N = 147; including alcohol, cannabis, sedatives, 
stimulants, hallucinogens, and/or opioid use disorder) with or without comorbid depression and 
anxiety disorders. These individuals were compared to 54 HCs with no mental health diagnoses. 
Most substance users were currently enrolled in a residential facility or maintenance outpatient 
program after completion of more intensive treatments (mean days abstinent = 92; SD = 56). Due 
to a difference between HCs and SUDs in scores on the Wide Range Achievement Test (WRAT) – a 
commonly used measure of premorbid IQ (Johnstone, Callahan, Kapila, & Bouman, 1996) – our 
prior study also confirmed results in a subsample propensity matched on this measure (as well as 
on age and sex). This included 51 HCs and 49 SUDs. Of the participants who were invited to return 
for the 1-year follow-up, 48 HCs and 83 substance users agreed to participate (45 HCs and 25 SUDs 
in the propensity matched subsample). Table 1 lists group demographics and clinical measures for 
both the baseline and follow-up samples by group (only including those that returned for follow-
up). Table 2 also lists diagnosis frequency for specific SUDs and anxiety/depression for baseline 
and follow-up (including all participants, showing that diagnostic composition did not change with 
dropout).

http://ClinicalTrials.gov
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2.2 PROCEDURE

T1000 participants underwent a thorough assessment of demographic, clinical and psychiatric 
factors. The complete list of assessments and supportive references are provided in (Victor et al., 
2018). Here we focus on the same symptom measures assessed in the baseline study (i.e., DAST, 
PHQ, and OASIS).

To address our questions about the longitudinal reliability and predictive utility of computational 
measures gathered at baseline, participants performed the same three-armed bandit task at 
follow-up (Zhang & Yu, 2013). This task is designed to quantify how individuals switch between 

  FULL DATASET PROPENSITY-MATCHED

BASELINE  
(N = 147)

FOLLOW-UP  
(N = 83)

ANALYSIS BASELINE  
(N = 49)

FOLLOW-UP  
(N = 25)

ANALYSIS

Substance Use Disorders

Alcohol 55 (37%) 30 (36%) χ2(1) = 0.04 
p = 0.85

20 (41%) 10 (40%) χ2(1) = 0 
p = 0.95

Cannabis 55 (37%) 23 (28%) χ2(1) = 2.23 
p = 0.14

17 (35%) 5 (20%) χ2(1) = 1.71 
p = 0.19

Stimulants 104 (71%) 61 (73%) χ2(1) = 0.2 
p = 0.66

35 (71%) 18 (72%) χ2(1) = 0 
p = 0.96

Opioids 56 (38%) 30 (36%) χ2(1) = 0.09 
p = 0.77

25 (51%) 14 (56%) χ2(1) = 0.16 
p = 0.68

Sedatives 38 (26%) 21 (25%) χ2(1) = 0.01 
p = 0.93

14 (29%) 9 (36%) χ2(1) = 0.43 
p = 0.51

Hallucinogens 5 (3%) 3 (4%) χ2(1) = 0.01 
p = 0.93

2 (4%) 2 (8%) χ2(1) = 0.5 
p = 0.48

2+ Disorders 94 (64%) 51 (61%) χ2(1) = 0.14 
p = 0.71

34 (69%) 18 (72%) χ2(1) = 0.05 
p = 0.82

Alcohol Only 9 (6%) 6 (7%) χ2(1) = 0.11 
p = 0.74

3 (6%) 2 (8%) χ2(1) = 0.09 
p = 0.76

Cannabis Only 9 (6%) 4 (5%) χ2(1) = 0.17 
p = 0.68

4 (8%) 2 (8%) χ2(1) = 0 
p = 0.98

Stimulants 
Only

26 (18%) 17 (20%) χ2(1) = 0.27 
p = 0.6

6 (12%) 3 (12%) χ2(1) = 0 
p = 0.98

Opioids Only 8 (5%) 5 (6%) χ2(1) = 0.03 
p = 0.85

2 (4%) 0 (0%) χ2(1) = 1.05 
p = 0.31

Sedatives 
Only

0 (0%) 0 (0%) NA 0 (0%) 0 (0%) NA

Mood, Anxiety, Stress Disorders

Major 
Depressive

78 (53%) 43 (52%) χ2(1) = 0.03 
p = 0.85

30 (61%) 15 (60%) χ2(1) = 0.01 
p = 0.92

Generalized 
Anxiety

22 (15%) 14 (17%) χ2(1) = 0.15 
p = 0.7

9 (18%) 7 (28%) χ2(1) = 0.91 
p = 0.34

Social Anxiety 19 (13%) 11 (13%) χ2(1) = 0.01 
p = 0.94

8 (16%) 3 (12%) χ2(1) = 0.24 
p = 0.62

Panic 17 (12%) 10 (12%) χ2(1) = 0.01 
p = 0.91

7 (14%) 3 (12%) χ2(1) = 0.07 
p = 0.79

Post-
Traumatic 
Stress

23 (16%) 14 (17%) χ2(1) = 0.06 
p = 0.81

10 (20%) 5 (20%) χ2(1) = 0 
p = 0.97

2+ Disorders 46 (31%) 30 (36%) χ2(1) = 0.56 
p = 0.45

18 (37%) 10 (40%) χ2(1) = 0.08 
p = 0.78

Table 2 Lifetime DSM-IV/DSM-
5 psychiatric disorders within 
SUDs.

Note: Stimulants 
= amphetamine, 
methamphetamine, and/or 
cocaine.
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an information-seeking and reward-seeking strategy. In each of 20 games, participants had to 
repeatedly sample from 3 different choice options with unknown (stable) reward probabilities of 
winning/losing, with the goal of maximizing reward. The optimal strategy is to start by ‘exploring’ 
(trying all possible options) to gain information about the probability of winning for each option, 
and then begin ‘exploiting’ after a few trials by repeatedly choosing the option believed to 
have the highest reward probability. Participants were informed that each game had 16 trials – 
corresponding to 16 tokens that could be used by pressing one of 3 buttons. The top-left panel 
of Figure 1 depicts the task interface, which displayed the game number, trial number, and total 
points earned as participants progressed through the task. After using each token, they earned 1 
point if the token turned green or zero points if the token turned red. Each token decision lasted 
about 2 sec. After the button press, the chosen option became highlighted for 250ms, after which 
the token turned green or red to reveal the choice outcome. Participants were instructed to find 
the most rewarding option and maximize the points earned in each game. They were informed 
that each option had a different (unknown) probability of reward that would not change within a 
game, but that the probabilities could change at the start of each new game. Reward probabilities 
were generated from a Beta(2, 2) distribution prior to the start of data collection. Identical reward 
probabilities were used across participants, with pseudorandomized block order. Participants were 
paid an additional $5 or $10 based on task performance.

2.3 COMPUTATIONAL MODELING 

To model task behavior, we adopted the same partially observable Markov decision process 
(POMDP) model used at baseline. This approach was motivated by the fact that these models can 
test for differences in learning rates, random exploration, goal-directed exploration, and sensitivity 
to information (Schwartenbeck et al., 2019), each of which can contribute to explore/exploit 
decisions in distinct ways. Estimating the (potentially suboptimal) values of these parameters 
for each individual can provide insights into the specific decision processes that may promote 
maladaptive behavior in SUDs (Schwartenbeck et al., 2015).  For details about the structure and 
mathematics of this general class of models, see (Da Costa et al., 2020; Smith, Friston, et al., 2022). 

The model is described in full detail in Supplementary Materials. Example simulations are also 
shown in Supplementary Figure S1. The model is identical to that used in our previous paper 
and is outlined in Table 3. The model is also depicted graphically (with associated equations) in 
Figure 1 and described in detail in the legend. Briefly, the model was defined by (1) the choice 
states available on each trial in the task, (2) the possible outcomes of those choices (wins/losses), 
(3) the reward probabilities under each choice state, and (4) the reward value of each possible 
outcome. Free parameters that influence behavior in the model include: action precision (a), 
reward sensitivity (cr), learning rate (η), and insensitivity to information (a0). The action precision 
parameter controls the level of stochasticity in choice. Lower values promote choices that are 
less consistent with beliefs about reward probabilities. In explore-exploit tasks, this corresponds 
most closely to the construct of random exploration (i.e., choosing actions more randomly as a 
means of gathering information in the context of high uncertainty). However, random choices 
in later trials are less consistent with an exploration-based interpretation. The reward sensitivity 
parameter reflects how much an individual values observing a win. Importantly, as described in 
Supplementary Materials, decision-making is based on a weighted trade-off between expected 
reward and expected information gain. This means that lower reward sensitivity values will 
lead individuals to place more value on information-seeking and lead to greater goal-directed 
exploration. Learning rates quantify how quickly an individual’s beliefs about reward probabilities 
change when observing each new win/loss. (i.e., influencing how quickly the value of information 
decreases over time). Insensitivity to information reflects baseline levels of confidence in beliefs 
about the probability of wins vs. losses for each choice (i.e., before making any observations). 
Higher insensitivity also leads to reduced goal-directed exploration, because an individual sees 
less need to seek information a priori. However, unlike reward sensitivity, the influence of this 
parameter interacts with learning (i.e., higher values also have the effect of making beliefs about 
reward probabilities less malleable). 



Figure 1 Upper left: Illustration of the three-armed bandit task interface. In each of 20 games, participants had 16 opportunities (trials) to choose 
between one of three options with unknown (but stable) probabilities of winning vs. not winning a point (corresponding to the appearance of a 
green vs. red circle above the chosen option). Throughout the task, the interface displayed the game number, trial number, total points earned, 
and history of wins/losses for each choice within the current game (number of green and red circles above each option; see main text for more 
details). Left panel: Graphical depiction of the computational (partially observable Markov decision process) model used with the task (described 
in the main text). The values of variables in blue circles are inferred on each trial, whereas parameter values in white circles are fixed on each trial. 
Here, arrows indicate dependencies between variables such that observations ( )m

to  for each modality m (reward and observed choice) at a time 
t depend on choice states (st) at time t, where these relationships, ( | )m

t tp o s , are specified by a matrix A. States depend on both previous states 
and the choice of action policy (π), as specified by policy-dependent transition matrices Bπ that encode p(st+1|st, π). States at t = 1 have an initial 
state prior specified by a vector D. Here, D = [1 0 0 0]T, such that the participant always started in an undecided ‘start’ state at the beginning of 
each trial. The probability of selecting an action policy depends on its expected free energy (Gπ), which in turn depends on the subjective reward 
value of making different observations (e.g., a win vs. loss) for the participant (in a vector C). These preferences are defined as a participant’s log-
expectations over observations, ( )m

to . As shown in the top-right panel, the values in C are passed through a softmax (normalized exponential) 
function, σ(), which transforms them into a proper probability distribution, and then converted into log probabilities. Top right panel: Specifies the 
mathematical form of the dependencies between C, Gπ, π, and a in action selection. When there is no uncertainty about states (as is true of this 
task), Gπ assigns higher values to actions that are expected to simultaneously maximize information gain and reward. The first term on the right 
corresponds to expected information gain under approximate posterior beliefs (q). Large values for this first term indicate the expectation that 
beliefs about reward probabilities (A) will undergo a large change (i.e., that a lot will be learned about these probabilities) given a choice of policy, 
due to the states and observations it is expected to generate. The second term on the right motivates reward maximization, where a high reward 
value corresponds to a precise prior belief over a specific observation, ( )m

tp o . For example, if the subjective value of a win in C were cr = 4 (see bottom 
right panel), this would indicate a greater subjective reward (higher prior probability) than cr = 2. The policy expected to maximize the probability of 
a win (under the associated beliefs about states, observations, and reward probabilities) is therefore favored. Because the two terms in expected 
free energy are subtracted, policies associated with high expected reward and high expected information gain will be assigned a lower expected 
free energy. This formulation entails that information-seeking dominates when reward probabilities are uncertain, while reward-seeking dominates 
when uncertainty is low. A softmax function, σ(), then transforms the negative expected free energies into a probability distribution over policies, 
such that policies with lower expected free energies are assigned higher probabilities. When actions are subsequently sampled from the posterior 
distribution over policies, randomness in chosen actions is controlled by an action precision parameter (a).  Bottom panel: After each observation of 
a win/loss, learning corresponds to updating beliefs in a Dirichlet distribution (a) over the likelihood matrix A that encodes reward probabilities. Here, 
columns indicate (from left to right) a starting state (pre-choice) and choices 1, 2, and 3, where the rows (from top to bottom) indicate the pre-
choice (no reward) observation, observing reward, or no reward. The value of a0 – the insensitivity to information parameter – is the starting value 
for beliefs about reward probabilities. These beliefs always start by making up an uninformative (flat) distribution, but higher starting values (e.g., 5 
vs. 0.5) effectively down-weight the information-gain term in the expected free energy – leading to an insensitivity to the need for information. The 
values within a (reward) are then updated based on the bottom equation, controlled by a learning rate parameter (η). For more details regarding 
the associated mathematics, see the main text and supplemental materials, as well as (Da Costa et al., 2020; K. J. Friston, Lin, et al., 2017; K. J. 
Friston, Parr, & de Vries, 2017; Smith, Friston, & Whyte, 2022). Estimated model parameters are shown in dark red.
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MODEL 
ELEMENT

GENERAL DESCRIPTION MODEL SPECIFICATION

m
to

One vector per modality (m) of possible 
observations. Each vector contains entries 
corresponding to possible observable stimuli for 
that category at time t.

Possible observations for reward (modality 1):
1.	 Start
2.	 Reward
3.	 No reward

Possible observations for choice (modality 2):
1.	 Start
2.	 Choice 1
3.	 Choice 2
4.	 Choice 3

st A vector containing entries corresponding to 
the probability of each possible state that could 
be occupied at time t.

Possible choice states:
1.	 Start
2.	 Choice 1
3.	 Choice 2
4.	 Choice 3

A
( | )m

t tp o s
A matrix encoding the relationship between 
states and observations (one matrix per 
outcome modality).

1.	 A reward probability matrix: 

	 p(oreward|schoice)

2.	� An identity matrix for observed choice 
(entailing that participants had no 
uncertainty about the choice they made): 

	 p(ochoice|schoice)

a
( | )m

t tp o s
Dirichlet priors associated with the A matrix 
that specify beliefs about the mapping from 
states to observations. Learning corresponds 
to updating the concentration parameters for 
these priors after each observation, where the 
magnitude of the updates is controlled by a 
learning rate parameter η (see Supplementary 
Materials and Figure 1).

Each entry for learnable reward probabilities 
began with a uniform concentration parameter 
value of magnitude a0, and was updated 
after each observed win or loss on the task. 
The learning rate η and a0 (which can be 
understood as a measure of sensitivity to new 
information; see Supplementary Materials) 
were fit to participant behavior.

B
p(st+1|st,π)

A set of matrices encoding the probability of 
transitioning from one state to another given 
the choice of policy (π). Here policies simply 
include the choice of each bandit.

Transition probabilities were deterministic 
mappings based on a participant’s choices 
such that, for example, p(schoice 1|sstart,πoption 1) = 1, 
and 0 for all other transitions, and so forth for 
the other possible choices.

C
p(ot)

One vector per observation modality (per time 
point) encoding the preference (subjective 
reward value) of each possible observation 
within that modality. This vector is passed 
through a softmax function and then log-
transformed.

The value of observing a win was a model 
parameter cr reflecting subjective reward 
value (reward sensitivity); the value of all 
other observations was set to 0. The value 
of cr was fit to participant behavior. Crucially, 
higher cr values have the effect of reducing 
goal-directed exploration, as the probability of 
each choice (based on expected free energy 
Gπ) becomes more driven by reward than by 
information-seeking (see Supplementary 
Materials and Figure 1).

D
p(st=1)

A vector encoding prior probabilities over states. This encoded a probability of 1 that the 
participant began in the start state.

π A vector encoding the probability of selecting 
each allowable policy (one entry per policy). 
The value of each policy is determined by its 
expected free energy (Gπ), which depends on a 
combination of expected reward and expected 
information gain. Actions at each time point are 
chosen based on sampling from the distribution 
over policies, π = σ (–G); the determinacy of 
action selection is modulated by an inverse 
temperature or action precision parameter α 
(see Supplementary Materials and Figure 1).

This included 3 allowable policies, 
corresponding to the choice of transitioning 
to each of the three choice states. The action 
precision parameter α was fit to participant 
behavior.

Table 3 Computational model 
description.
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Estimating these parameters (a, c, η, a0) for each individual therefore affords investigation of 
the mechanisms that can lead to maladaptive choice under uncertainty on an individual basis 
(Schwartenbeck et al., 2015). Model simulations were run using standard routines available in SPM12 
academic software (http://www.fil.ion.ucl.ac.uk/spm/; see software note). As with our prior study, 
we estimated 10 different nested models, illustrated in Table 4, each with different combinations 
of possible parameters. Bayesian model comparison was then performed to determine the best 
model (based on (Rigoux, Stephan, Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau, 
Moran, & Friston, 2009)). Variational Bayes (variational Laplace; (K. Friston, Mattout, Trujillo-
Barreto, Ashburner, & Penny, 2007)) was used to estimate parameter values that maximized the 
likelihood of each participant’s responses, as described in (Schwartenbeck & Friston, 2016). After 
establishing the winning model, we confirmed parameter recoverability by simulating behavior 
under the range of parameter values observed in participants (i.e., using the same combinations 
of posterior parameter values inferred from the behavioral data in each subject). We then ran 
the estimation routine on this behavior and examined correlations between the generative and 
estimated parameters. We also performed additional diagnostic checks (described in detail within 
Supplementary Materials) to assess model identifiability within Bayesian model comparison and 
to confirm that parameter estimates in the winning model were not strongly dependent on choice 
of prior means within variational Bayes.

2.4 STATISTICAL ANALYSES

All analyses were performed in R or MATLAB. We first re-performed the same model assessment 
measures as in the original paper for the 1-year follow-up data. This included model accuracy 
metrics, reflecting (1) the average probability of participants’ actions across trials under the model, 
and (2) the average percentage of trials for which the highest probability action in the model 
matched the action chosen by participants (i.e., under subject-specific parameter estimates). 

We next examined whether participants who did vs. did not return for the follow-up in each group 
differed in baseline model parameter values, symptom severity, and/or age, sex, or premorbid IQ. 
As in our prior study, we then ran a parametric empirical Bayes (PEB) analysis (K. J. Friston et al., 
2016; Zeidman et al., 2019) using standard MATLAB routines (see software note) to assess stability 
of group differences over time in both the full and propensity-matched sample. PEB computes 
group posterior estimates in a general linear model that incorporates posterior variances of 
individual-level parameter estimates when assessing evidence for group-level models with and 

PARAMETER: a
(ACTION 
PRECISION)

cr

(REWARD 
SENSITIVITY)

η
(LEARNING RATE)

a0

(INSENSITIVITY 
TO 
INFORMATION)

Default value if not estimated 4  (always 
estimated)

(removed from 
model)

0.25

Prior means during estimation* 4 4 0.5 0.25

Model 1 Y Y N N

Model 2 Y Y Y N

Model 3 Y Y Y Y

Model 4 N Y Y Y

Model 5 N Y Y N

Model 6 N Y N N

Model 7 N Y N Y

Model 8 Y Y N Y

Model 9** Y Y Wins/Losses Y

Model 10 Y Y Wins/Losses N

Table 4 Nested models.

Y indicates that a parameter 
was estimated for that model; 
N indicates that a parameter 
was not estimated for that 
model. 

* Prior variance for all 
parameters was set to a precise 
value of 2–2 in order to deter 
over-fitting. 

** Winning model.

http://www.fil.ion.ucl.ac.uk/spm/
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without the presence of effects of group and time (and their interaction). A further benefit of 
this type of hierarchical Bayesian analysis is that it is robust against concerns related to multiple 
comparisons (Gelman, Hill, & Yajima, 2012; Gelman & Tuerlinckx, 2000; Dienes, 2008, 2011, 2014). 
We specifically ran models including age, sex, the Wide Range Achievement Test (WRAT) reading 
score (henceforth referred to as premorbid IQ), group (SUDs versus HCs), time, and their interaction 
as predictor variables (see Supplementary Materials for further details). For consistency with 
frequentist analyses in our baseline study, and with analyses of model-free variables below, 
supplementary linear mixed effects models (LMEs) with the same predictors were also run for 
posterior parameter means as point estimates. 

In the full sample, we then estimated the longitudinal stability of overall task performance (total 
wins) and individual parameter estimates between baseline and 1-year follow-up using single-
measure consistency intraclass correlations that account for fixed effects across time [ICC(3, 
1)]. We chose this ICC measure due to the expectation that time and/or task familiarity could 
plausibly influence task behavior equivalently across all participants. Although we note that these 
ICCs should not be interpreted as standard test-retest reliability analyses due to the lengthy time 
period between sessions, where true changes in participant characteristics can plausibly occur, 
including changes in symptom severity. To address this possibility, we also performed exploratory 
analyses examining the relationship between pre-post change scores in parameters and pre-post 
changes in DAST scores, while accounting for age, sex, and premorbid IQ.

Next, in the SUD group, we performed exploratory analyses examining whether parameter values 
at baseline could predict symptom severity (DAST) scores at 1-year follow-up, before and after 
accounting for what could be predicted from differences in baseline symptom levels, age, sex, 
and premorbid IQ. These analyses were performed across all SUDs, as well as when separating 
individuals by specific SUDs (i.e., with the exception of hallucinogen use disorders, due to insufficient 
sample size [N = 3]). For these analyses, and the change score analyses above, six participants in the 
SUDs group were removed due to floor values for DAST at baseline (i.e., due to abstinence prior to 
study participation), as this prevented the possibility of measurable symptom decreases. Although 
exploratory, we also indicate whether identified relationships survive a Bonferroni correction for 
multiple comparisons. We also report associated Bayes factors (BFs) for these correlations to 
assess the probability of the data under models with vs. without these relationships (i.e., using JZS 
Bayes factor analyses with default prior scales in R; BayesFactor package (Morey & Rouder, 2015; 
Rouder, Morey, Speckman, & Province, 2012)). To calculate these BFs, the BayesFactor package 
assumes noninformative priors for the population means and variances; a shifted, scaled beta 
(1/rscale,1/rscale) prior distribution is assumed for the linear relationship in the population (Ly, 
Verhagen, & Wagenmakers, 2016), with rscale = 1/3.

Finally, to confirm relationships seen at baseline between model parameters and model-free 
metrics of task behavior, we first calculated mean reaction times (RTs), trimmed using an iterative 
Grubbs test method to remove outliers until a distribution was found which contained no outliers 
at a threshold of p < .01; (Grubbs, 1969). This was the same method used in our prior report on 
the baseline data, and was done to minimize any noise in the data due to influences unrelated 
to the decision processes of interest, such as lapses in attention or accidental button presses. We 
also calculated the number of stays vs. shifts in bandit selection after win and loss outcomes. We 
examined the relationship between each of these model-free metrics and our model parameters 
to gain more insights into the meaning of observed differences. Toward this end, we examined 
the first and second halves of the games separately (i.e., first 7 choices vs. final 8 choices) to 
assess periods wherein exploration vs. exploitation would be expected to dominate. To test for 
consistency with our baseline findings, we also report results of LMEs assessing effects of group 
and time (and their interaction) on these measures when accounting for age, sex, and premorbid 
IQ (as well as associated Bayes factors).

As in our prior study, we note here that each of these analyses are considered exploratory, as part 
of the pre-defined exploratory sample of T1000 participants. Pre-registered analyses will be done 
to replicate all results in the confirmatory sample (i.e., the subset of the latter 500 participants of 
the T1000 sample meeting criteria for HC or SUD groups). 
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3. RESULTS
3.1 MODEL COMPARISON AND ACCURACY

When comparing the 10 nested models (Table 4), the winning model at 1-year follow-up was 
the same model previously found to best explain behavior at baseline – including action precision 
(a), reward sensitivity (cr), separate learning rates for wins (ηwin) and losses (ηloss), and insensitivity 
to information (a0) (protected exceedance probability = 1). On average, this model accurately 
predicted true actions on 63% of trials (SD = 11%); SUDs = 62% (SD = 10%), HCs = 64% (SD = 
11%). The average probability assigned to participants’ true actions by this model was .57 (SD 
= .11); SUDs = .57 (SD = .11), HCs = .58 (SD = .11). Note that chance accuracy = 1/3. Parameter 
recoverability analyses showed that generative and estimated parameters for simulated behavior 
under this model were highly correlated for the range of parameter values observed in our 
participants: action precision (r = .80, p < .001), reward sensitivity (r = .90, p < .001), learning rate 
for wins (r = .91, p < .001), learning rate for losses (r = .91, p < .001), insensitivity to information (r = 
.79, p < .001). For results of further diagnostic analyses assessing model identifiability and stability 
of parameter estimates under different choices of prior means, see Supplementary Materials. 
In brief, results of model identifiability analyses showed that the winning model (i.e., Model 9 in 
Table 4) was correctly identified in model comparison when it was used to generate simulated 
data. However, one other model (Model 10) was also incorrectly identified as Model 9, suggesting 
these two models (i.e., the only models containing separate learning rates for wins and losses) 
may not be fully distinguishable. Results also confirmed that parameter estimates for Model 9 
were highly correlated when estimated under distinct prior means, suggesting that our results are 
not strongly prior-dependent.

3.2 LONGITUDINAL STABILITY OF GROUP DIFFERENCES

When comparing individuals at baseline in each group who did vs. did not return for follow-up, 
those who did not return did not significantly differ in age, sex, OASIS, scores, PHQ scores, or DAST 
scores at baseline (in either the full or matched samples).

Table 5 presents descriptive statistics for parameters by group. Bayesian (PEB) analyses testing 
effects on posterior distributions (means and variances) for each parameter also revealed very 
strong evidence for a number of effects in both the full and matched samples (posterior probability 
= 1 in all cases). When assessing potential effects of group, time, and their interaction (and 
accounting for age, sex, and baseline premorbid IQ), the model with the most evidence in both the 
full and matched samples included a sustained group difference in learning rate for losses from 
baseline to follow-up (slower in SUDs; full sample: b = 0.21, credible interval [CI] = [0.11, 0.31]; 
matched sample: b = 0.21, CI = [0.10, 0.33]; see Figure 2). For statistical results in analogous LMEs 
taking a frequentist approach, see Table 5. However, these analyses did not support a sustained 
difference in action precision or learning rate for wins as seen in our previous report, or a group 
difference in any other parameter. There were also effects of time on reward sensitivity (increases 
over time; full sample: b = 0.09, CI = [0.07, 0.11]; matched sample: b = 0.09, CI = [0.07, 0.12]) and 
learning rate for losses (decreases over time; full sample: b = –0.22, CI = [–0.15, –0.28]; matched 
sample: b = –0.12, CI = [–0.05, –0.20]) in both samples. There were no interactions between group 
and time for any parameter in the full sample. In contrast, within the matched sample, group by 
time interactions were present in the winning model for reward sensitivity (steeper increase over 
time in SUDs; b = –0.06, CI = [–0.03, –0.09]) and learning rates for wins (decrease over time in SUDs 
but increase over time in HCs; b = 0.17, CI = [0.09, 0.25]). 

There were also effects of age, sex, and premorbid IQ on some parameters. In the full sample: (1) 
age was negatively associated with action precision (b = –0.02, CI = [–0.02, –0.03]) and positively 
associated with reward sensitivity (b = 0.03, CI = [0.02, 0.03]), (2) learning rate for wins was faster 
in males (b = 0.17, CI = [0.08, 0.26]), and (3) higher premorbid IQ was associated with slower 
learning rate for losses (b = –0.05, CI = [–0.04, –0.07]). In the matched sample, reward sensitivity 
was greater in males (b = 0.19, CI = [0.15, 0.24]) and premorbid IQ was positively associated with 
action precision (b = 0.02, CI = [0.01, 0.03]). 
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Additional PEB analyses focused only on 1-year follow-up data (i.e., analogous to those reported 
in our baseline study, accounting for age, sex, and premorbid IQ) also showed positive evidence 
for the group difference in learning rate for losses in both the full sample (posterior probability = 
.83; b = 0.22, CI = [0.001, 0.43]) and matched sample (posterior probability = .93; b = 0.28, CI = 
[0.07, 0.48]). For plots of each parameter by group and time in both samples, see Supplementary 
Figure S2. For plots of the additional PEB results (illustrating effect sizes) not shown in Figure 2, 
see Supplementary Figure S3. For consistency with frequentist analyses in our baseline study, 
Table 5 also presents effects of group, session, and their interaction within LMEs predicting the 
posterior parameter means (with the same additional predictors as the PEB models). Findings 
were largely consistent with the Bayesian results. However, significant group effects were also 
present in action precision and learning rate for wins in the full sample (mirroring our previously 
reported baseline results). Linear models equivalent to those in our baseline paper also supported 
PEB results in showing significantly slower learning rates for losses in SUDs than HCs when only 
comparing groups at follow-up (full sample: t(117) = 2.137, p = .03, d = 0.40), but showed no other 
significant differences for other parameters.

3.3 INDIVIDUAL-LEVEL PARAMETER STABILITY

The ICCs for task performance and parameters between baseline and 1-year follow-up were 
poor to moderate (see Table 6 and Figure 3), with the highest values across all participants for 
reward sensitivity (ICC = .54) and learning rate for losses (ICC = .43). With the exception of action 
precision and total wins, SUDs tended to have numerically higher ICCs than HCs. Task performance 
(total wins) showed the lowest stability over time across participants (ICC = .15), driven by a non-
significant association between baseline and follow-up in the SUD group.

There were no significant associations between pre-post changes in DAST scores and pre-post 
changes in parameters across all SUDs. When examining specific SUDs separately, both stimulant 
and opioid users showed an association between pre-post changes in DAST scores and pre-post 
changes in action precision. In stimulant users, this correlation was r = –.28 (p = .03, BF = 2.44), 
and this remained unchanged after accounting for the relationship between DAST changes and 
age, sex, and premorbid IQ scores (r = –.29, p = .03, BF = 2.35; see Figure 4). In opioid users, this 
correlation was r = –.34 (p = .07, BF = 1.65), and this became significant after accounting for the 
relationship between DAST changes and age, sex, and premorbid IQ scores (r = –.38, p = .046, 
BF = 2.18). No other associations were found (see Supplementary Figure S4 for specific values). 
None of these relationships remained significant when correcting for multiple comparisons.

Figure 2 Left: Results of 
parametric empirical Bayes 
(PEB) analyses, showing the 
posterior means and variances 
for group difference estimates 
in the full and propensity-
matched samples in models 
accounting for age, sex, and 
premorbid IQ. These Bayesian 
group comparisons confirm the 
differences in learning rates for 
losses seen at baseline. There 
was also a main effect of time 
on this learning rate, but no 
significant interactions between 
group and time, indicating 
the group effects were stable. 
No other parameters showed 
main effects of group. See 
main text for further results 
of these analyses. Learning 
rate values are in logit-space. 
Right: Spaghetti plots showing 
individual changes from 
baseline to follow-up, as well 
as group means and standard 
errors, for learning rate for 
losses in the full and matched 
samples. HCs = healthy controls, 
SUDs = substance use disorders.



131Smith et al.  
Computational Psychiatry  
DOI: 10.5334/cpsy.85

3.4 SYMPTOM CHANGE PREDICTION

In the full sample of substance users, no significant predictive relationships were found between 
baseline model parameters and DAST scores at 1-year follow-up (after accounting for baseline 
DAST scores, with or without accounting for age, sex, and premorbid IQ). However, when restricting 
the sample to stimulant users in subsequent exploratory analyses, we observed a significantly 
positive predictive relationship between baseline learning rates for losses and DAST scores at 1-year 
follow-up (r = .33, p = .01, BF = 5.91), which became stronger after accounting for what could be 
predicted by age, sex, and premorbid IQ (r = .4, p = .002, BF = 20.99; see Figure 5). Significant 

GROUP ICC(3, 1) p

Total wins All .15 .05

HCs .27 .03

SUDs .08 .23

a (action precision) All .32 <.001

HCs .45 <.001

SUDs .15 .09

cr (reward sensitivity) All .54 <.001

HCs .48 <.001

SUDs .58 <.001

ηwin

(learning rate for wins)
All .35 <.001

HCs .28 .03

SUDs .37 <.001

ηloss

(learning rate for losses)
All .43 <.001

HCs .35 .007

SUDs .45 <.001

a0

(insensitivity to information)
All .25 .002

HCs .24 .05

SUDs .25 .01

Table 6 Intra-class correlations 
between baseline and 1-year 
follow-up (full sample).

Figure 3 Correlations between 
computational parameters at 
baseline and 1-year follow-up.
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negative predictive relationships were also found with baseline learning rates for wins (r = –.29, p 
= .03, BF = 2.89) and insensitivity to information (r = –.36, p = .005, BF = 11.46), which each also 
became stronger after accounting for age, sex, and premorbid IQ (respectively: r = –.36, p = .007, 
BF = 8.18; r = –.38, p = .004, BF = 13.08; see Figure 5). Each of the results accounting for age, sex, 
and IQ survived Bonferroni correction for 6 comparisons (i.e., for assessing relationships in the full 
sample and the 5 specific SUD subsamples; corrected threshold: p < .0083). However, none remain 
significant if using a more conservative correction for 30 comparisons (i.e., 5 parameters within the 
total sample and in each subsample; corrected threshold: p < .0017). When restricting analyses 
to opioid users, we observed a significantly negative predictive relationship between baseline 
information insensitivity and DAST scores at 1-year follow-up (r = –.43, p = .02, BF = 4.10), which 
weakened after accounting for what could be predicted by age, sex, and premorbid IQ (r = –.35, p = 
.07, BF = 1.66). However, this relationship did not survive correction for multiple comparisons. When 
restricting analyses to alcohol users, there was a trending negative relationship with information 
insensitivity (r = –.37, p = .07), which weakened after accounting for what could be predicted by 
age, sex, and premorbid IQ (r = –.26, p = .22). No other notable relationships were observed (see 
Supplementary Figure S4 for specific values).

Figure 4 Top: Negative 
correlation in stimulant users 
(full sample) between pre-
to-post changes in action 
precision and pre-to-post 
changes in symptom severity 
(DAST). Bottom: Illustration of 
individual pre-to-post changes 
in DAST scores and action 
precision (as well as group 
mean and SE). As can be seen, 
DAST scores tend to decrease 
and action precision tends 
to increase, but with notable 
individual differences in each. 
DAST change scores account 
for what could already be 
predicted based on age, sex, 
and premorbid IQ. However, 
we note that this correlation 
did not survive correction for 
multiple comparisons and will 
need to be replicated in future 
work.

Figure 5 Predictive relationships 
in stimulant users (full sample) 
between baseline model 
parameters and symptom 
severity at 1-year follow-up, 
after accounting for what could 
already be predicted based 
on age, sex, and premorbid 
IQ. The p-values shown here 
are uncorrected, but the 
relationships with learning 
rates and insensitivity to 
information survive correction 
for 6 comparisons (i.e., one per 
SUD group tested; corrected 
threshold of p < .0083). No 
relationship survives a more 
conservative correction for 30 
comparisons (i.e., accounting 
for 5 parameters tested in each 
SUD group; corrected threshold 
of p < .0017).
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Although not a part of our initial hypotheses, for the interested reader (and for the purpose of 
future hypothesis generation) we report subsequent post-hoc exploratory analyses within 
Supplementary Materials examining possible relationships between model parameters and 
symptom severity at follow-up. These analyses did not reveal significant results (although 
suggestive trends were present in some cases).

3.5 COMPARISON TO MODEL-FREE MEASURES

Table 7 lists descriptive statistics by group and time in model-free behavioral measures (total wins, 
win/lose stay/shift choices, and RTs). This table also shows results of LMEs assessing the main 
effects and interactions between group and time, while accounting for age, sex, and premorbid 
IQ. In Supplementary Tables S1–2, results are further divided into sets derived from early trials 
(i.e., where information-seeking should be high; choices 2–7 per game), and late trials (i.e., where 
reward-seeking would be expected to dominate; subsequent 8 choices). Most notably, these 
results together indicated that, relative to HCs, SUDs showed a larger number of lose-stay choices 
across time (driven by choices in early trials) in both the propensity-matched and full samples. 
They also showed a smaller number of lose-shift choices across time (present in both early and 
late trials) in the full sample. A follow-up LME in the full sample testing for main effects and 
interactions between clinical group and early vs. late trial phase in predicting number of lose-
stay choices confirmed the presence of a significant interaction between group and trial phase 
(F(1, 462) = 5.15, p = 0.02), as well as a main effect of trial phase (F(1, 462) = 59.88, p < 0.001; a 
greater number of lose-stay choices in late trials). Although it showed a similar numerical trend 
(see Table S2), this interaction was not significant in the matched sample.

Supplementary Figure S5 shows the correlations between model parameters and model-free 
measures at 1-year follow-up. As can be seen there, results strongly resembled those previously 
found in our baseline study. First, there was a complex pattern of relationships with win/lose stay/
shift behavior in which reward sensitivity and information insensitivity promoted stay behaviors 
generally, action precision promoted win-stay choices on late trials, and learning rates had 
relationships with all types of choices in expected directions, but with the strongest relationship to 
stays vs. switches on loss trials. Number of wins only showed associations with reward sensitivity 
and action precision (positive relationship). This relationship was notably (numerically) stronger 
on late trials in each game. RTs were faster in those with higher reward sensitivity, information 
sensitivity, and learning rate for wins, and slower in those with higher learning rate for losses (ps < 
.001 and BFs > 100 in all cases).

4. DISCUSSION
In this study, we evaluated the longitudinal stability of both individual- and group-level differences 
between HCs and SUDs in computational measures of learning and decision-making over a 1-year 
period. We also examined whether these computational measures could predict changes in 
symptom severity over time. At the group level, both Bayesian and frequentist analyses showed that 
a slower learning rate for losses in SUDs (previously observed at baseline (Smith, Schwartenbeck, et 
al., 2020)) was stable over the 1-year period. Comparison to descriptive measures suggested that 
this (in part) tracked the fact that SUDs tended to continue with the same decision strategy after 
incurring a loss (primarily on early trials). This appears consistent with previous results showing 
associations between SUDs and difficulty avoiding punishment (Myers et al., 2017), diminished 
responses to negative stimuli (Hester, Bell, Foxe, & Garavan, 2013; Simons & Arens, 2007; Simons, 
Dvorak, & Batien, 2008; Stewart et al., 2014), reduced sensitivity to losses (Ahn et al., 2014), and a 
lower impact of large losses on future choices (Petry, Bickel, & Arnett, 1998). Importantly, it could 
help explain why substance use continues despite negative life consequences. As changes in this 
learning rate did not correspond to symptom changes over time, it might more plausibly act as a 
pre-existing (trait) vulnerability factor. For example, those with a greater tendency to persist in a 
pattern of behavior despite negative outcomes could be more likely to engage in substance use a 
sufficient number of times to promote addiction. On the other hand, substance misuse over time 
could lead to less sensitivity to negative outcomes regardless of future symptom change.
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At the individual level, we found that some parameters showed moderate stability while others 
showed poor stability. The two most (moderately) stable parameters were learning rate for losses 
and reward sensitivity. As the former reflected the primary group differentiator, this further supports 
its potential role as a pre-existing vulnerability factor, which could act as an adjunct assessment 
of risk independent of self-report. While parameter estimation error could partly account for these 
attenuated relationships, we also examined whether the lower levels of stability we observed might 
be due to associations with individual differences in symptom changes. While not present across 
all SUDs, in stimulant and opioid users we found that larger reductions in symptom severity were 
associated with larger increases in action precision, which could suggest this parameter reflects 
evolving aspects of the disease process (although this will require replication before being afforded 
high confidence, as it did not survive correction for multiple comparisons). In our baseline study, 
SUDs showed significantly lower action precision than HCs, while this difference was no longer 
present at follow-up. This was due to increased action precision over time in SUDs – mirroring 
the overall reduction in symptom severity at follow-up. Given this pattern, future research should 
assess whether action precision might act as an objective measure of treatment progress.

When evaluating the predictive utility of baseline parameters, we did not find significant results 
across all SUDs. However, we did observe significant predictive relationships when restricting 
analyses to specific SUDs. Namely, we found that symptom severity at follow-up in stimulant 
users was predicted by baseline learning rate for losses (positive relationship), and also by 
information insensitivity and learning rate for wins (negative relationships); although we note 
that these relationships did not survive the most conservative approach to correction for multiple 
comparisons. Opioid users’ symptoms at follow-up showed a similar negative relationship with 
baseline information insensitivity, but this did not survive correction for multiple comparisons. If 
replicated in an independent confirmatory sample, assessment of these measures at treatment 
onset might therefore offer additional information about which patients will be more resistant to 
improvement over time. This represents another important topic for future research.

Despite SUDs showing slower learning from losses (and some evidence for faster learning from 
wins in frequentist analyses) at the group level, stimulant users with the slowest learning rates 
from losses (and fastest learning rates from wins) had better outcomes at follow-up. Also, despite 
(numerically) greater insensitivity to information in SUDs at the group level, both stimulant and 
opioid users with the greatest insensitivity also had lower symptoms at follow-up. One might 
speculate that, upon initiating abstinence, a slower learning rate from negative consequences 
could attenuate avoidance (akin to reducing lose/switch decisions) of the uncomfortable aspects 
of the recovery process (e.g., withdrawal, reflection on poor life circumstances in therapy, etc.) 
and allow a person to persist through a difficult situation without resorting to maladaptive coping 
mechanisms. However, such possibilities would require further investigation. Greater information 
insensitivity is also theoretically associated with reduced subjective uncertainty and greater 
confidence in expected action outcomes. In the right (e.g., therapeutic) circumstances, this could 
perhaps also play a role in facilitating recovery. However, there are also plausible ways in which 
these differences might be expected to have opposing effects as well. Independent of their 
predictive value, future research should therefore further address the theoretical significance and 
correct interpretation of these relationships, as they could speak to important components of 
decision-making mechanisms in SUDs that deserve attention as possible targets of behavioral 
interventions (Verdejo-Garcia et al., 2018; Verdejo-Garcia, Garcia-Fernandez, & Dom, 2019).

Although representative of the population (and therefore potentially more informative in real-
world clinical settings), one limitation of this study is the heterogeneity of our SUD group. Several 
secondary analyses in our baseline study addressed some related concerns, but they nonetheless 
constrain interpretability here. For example, the predictive relationships we found separately in 
stimulant and opioid users suggest that other SUDs (e.g., cannabis, sedatives) may have had 
confounding effects; but samples of individuals with each of these disorders in isolation would 
be needed to definitively answer this question. Another issue is that, although we did not identify 
differences in those who did versus did not return for the follow-up visit, drop-out nonetheless 
reduced the statistical power available for our analyses and could still limit the generalizability of 
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our results. We plan to address these issues further in the confirmatory dataset presently set aside 
within the T1000 project to replicate these results. A final issue worth highlighting is that model 
identifiability analyses suggested that model comparison was limited in its ability to distinguish 
the winning model from a model that did not include the insensitivity to information parameter. 
With this limitation in mind, the presence of distinct learning rates for wins and losses did appear 
identifiable, which supports the validity of our primary results.

In summary, we found that individuals with SUDs showed stable reductions in learning from losses 
relative to HCs over a 1-year period. Individual-level parameter stability was poor-to-moderate, 
and in some cases appeared to be attenuated by symptom changes. Finally, multiple model 
parameters at baseline showed potential predictive utility with respect to symptom changes over 
time. These results hold promise in the development of adjunct computational assessment tools 
for predicting symptom evolution and perhaps treatment progress, which could inform treatment 
decisions.

SOFTWARE NOTE
All model simulations, model comparison, and parametric empirical Bayes analyses were 
implemented using standard routines (spm_MDP_VB_X.m, spm_BMS.m, spm_dcm_peb.m, 
spm_dcm_peb_bmc.m) that are available as MATLAB code in the latest version of SPM academic 
software: http://www.fil.ion.ucl.ac.uk/spm/. For the specific code used to build the three-armed 
bandit task model and fit parameters to data, see: https://github.com/rssmith33/3-armed_
bandit_task_model.
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https://doi.org/10.5334/cpsy.85.s1

•	 Supplementary Code. Study Data. DOI: https://doi.org/10.5334/cpsy.85.s2
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	In the full sample, we then estimated the longitudinal stability of overall task performance (total wins) and individual parameter estimates between baseline and 1-year follow-up using single-measure consistency intraclass correlations that account for fixed effects across time [ICC(3, 1)]. We chose this ICC measure due to the expectation that time and/or task familiarity could plausibly influence task behavior equivalently across all participants. Although we note that these ICCs should not be interpreted 
	Next, in the SUD group, we performed exploratory analyses examining whether parameter values at baseline could predict symptom severity (DAST) scores at 1-year follow-up, before and after accounting for what could be predicted from differences in baseline symptom levels, age, sex, and premorbid IQ. These analyses were performed across all SUDs, as well as when separating individuals by specific SUDs (i.e., with the exception of hallucinogen use disorders, due to insufficient sample size [N = 3]). For these 
	Morey & Rouder, 2015
	Rouder, Morey, Speckman, & Province, 2012
	Ly, 
	Verhagen, & Wagenmakers, 2016

	Finally, to confirm relationships seen at baseline between model parameters and model-free metrics of task behavior, we first calculated mean reaction times (RTs), trimmed using an iterative Grubbs test method to remove outliers until a distribution was found which contained no outliers at a threshold of p < .01; (). This was the same method used in our prior report on the baseline data, and was done to minimize any noise in the data due to influences unrelated to the decision processes of interest, such as
	Grubbs, 1969

	As in our prior study, we note here that each of these analyses are considered exploratory, as part of the pre-defined exploratory sample of T1000 participants. Pre-registered analyses will be done to replicate all results in the confirmatory sample (i.e., the subset of the latter 500 participants of the T1000 sample meeting criteria for HC or SUD groups). 
	3. RESULTS
	3.1 MODEL COMPARISON AND ACCURACY
	When comparing the 10 nested models (), the winning model at 1-year follow-up was the same model previously found to best explain behavior at baseline – including action precision (a), reward sensitivity (c), separate learning rates for wins (η) and losses (η), and insensitivity to information (a) (protected exceedance probability = 1). On average, this model accurately predicted true actions on 63% of trials (SD = 11%); SUDs = 62% (SD = 10%), HCs = 64% (SD = 11%). The average probability assigned to partic
	Table 4
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	3.2 LONGITUDINAL STABILITY OF GROUP DIFFERENCES
	When comparing individuals at baseline in each group who did vs. did not return for follow-up, those who did not return did not significantly differ in age, sex, OASIS, scores, PHQ scores, or DAST scores at baseline (in either the full or matched samples).
	 presents descriptive statistics for parameters by group. Bayesian (PEB) analyses testing effects on posterior distributions (means and variances) for each parameter also revealed very strong evidence for a number of effects in both the full and matched samples (posterior probability = 1 in all cases). When assessing potential effects of group, time, and their interaction (and accounting for age, sex, and baseline premorbid IQ), the model with the most evidence in both the full and matched samples included 
	Table 5
	Figure 2
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	There were also effects of age, sex, and premorbid IQ on some parameters. In the full sample: (1) age was negatively associated with action precision (b = –0.02, CI = [–0.02, –0.03]) and positively associated with reward sensitivity (b = 0.03, CI = [0.02, 0.03]), (2) learning rate for wins was faster in males (b = 0.17, CI = [0.08, 0.26]), and (3) higher premorbid IQ was associated with slower learning rate for losses (b = –0.05, CI = [–0.04, –0.07]). In the matched sample, reward sensitivity was greater in
	Additional PEB analyses focused only on 1-year follow-up data (i.e., analogous to those reported in our baseline study, accounting for age, sex, and premorbid IQ) also showed positive evidence for the group difference in learning rate for losses in both the full sample (posterior probability = .83; b = 0.22, CI = [0.001, 0.43]) and matched sample (posterior probability = .93; b = 0.28, CI = [0.07, 0.48]). For plots of each parameter by group and time in both samples, see Supplementary Figure S2. For plots o
	Figure 2
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	3.3 INDIVIDUAL-LEVEL PARAMETER STABILITY
	The ICCs for task performance and parameters between baseline and 1-year follow-up were poor to moderate (see  and ), with the highest values across all participants for reward sensitivity (ICC = .54) and learning rate for losses (ICC = .43). With the exception of action precision and total wins, SUDs tended to have numerically higher ICCs than HCs. Task performance (total wins) showed the lowest stability over time across participants (ICC = .15), driven by a non-significant association between baseline an
	Table 6
	Figure 3

	There were no significant associations between pre-post changes in DAST scores and pre-post changes in parameters across all SUDs. When examining specific SUDs separately, both stimulant and opioid users showed an association between pre-post changes in DAST scores and pre-post changes in action precision. In stimulant users, this correlation was r = –.28 (p = .03, BF = 2.44), and this remained unchanged after accounting for the relationship between DAST changes and age, sex, and premorbid IQ scores (r = –.
	Figure 4

	3.4 SYMPTOM CHANGE PREDICTION
	In the full sample of substance users, no significant predictive relationships were found between baseline model parameters and DAST scores at 1-year follow-up (after accounting for baseline DAST scores, with or without accounting for age, sex, and premorbid IQ). However, when restricting the sample to stimulant users in subsequent exploratory analyses, we observed a significantly positive predictive relationship between baseline learning rates for losses and DAST scores at 1-year follow-up (r = .33, p = .0
	Figure 5
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	Although not a part of our initial hypotheses, for the interested reader (and for the purpose of future hypothesis generation) we report subsequent post-hoc exploratory analyses within Supplementary Materials examining possible relationships between model parameters and symptom severity at follow-up. These analyses did not reveal significant results (although suggestive trends were present in some cases).
	3.5 COMPARISON TO MODEL-FREE MEASURES
	 lists descriptive statistics by group and time in model-free behavioral measures (total wins, win/lose stay/shift choices, and RTs). This table also shows results of LMEs assessing the main effects and interactions between group and time, while accounting for age, sex, and premorbid IQ. In Supplementary Tables S1–2, results are further divided into sets derived from early trials (i.e., where information-seeking should be high; choices 2–7 per game), and late trials (i.e., where reward-seeking would be expe
	Table 7

	Supplementary Figure S5 shows the correlations between model parameters and model-free measures at 1-year follow-up. As can be seen there, results strongly resembled those previously found in our baseline study. First, there was a complex pattern of relationships with win/lose stay/shift behavior in which reward sensitivity and information insensitivity promoted stay behaviors generally, action precision promoted win-stay choices on late trials, and learning rates had relationships with all types of choices
	4. DISCUSSION
	In this study, we evaluated the longitudinal stability of both individual- and group-level differences between HCs and SUDs in computational measures of learning and decision-making over a 1-year period. We also examined whether these computational measures could predict changes in symptom severity over time. At the group level, both Bayesian and frequentist analyses showed that a slower learning rate for losses in SUDs (previously observed at baseline ()) was stable over the 1-year period. Comparison to de
	Smith, Schwartenbeck, et 
	al., 2020
	Myers et al., 2017
	Hester, Bell, Foxe, & Garavan, 2013
	Simons & Arens, 2007
	Simons, 
	Dvorak, & Batien, 2008
	Stewart et al., 2014
	Ahn et al., 2014
	Petry, Bickel, & Arnett, 1998

	At the individual level, we found that some parameters showed moderate stability while others showed poor stability. The two most (moderately) stable parameters were learning rate for losses and reward sensitivity. As the former reflected the primary group differentiator, this further supports its potential role as a pre-existing vulnerability factor, which could act as an adjunct assessment of risk independent of self-report. While parameter estimation error could partly account for these attenuated relati
	When evaluating the predictive utility of baseline parameters, we did not find significant results across all SUDs. However, we did observe significant predictive relationships when restricting analyses to specific SUDs. Namely, we found that symptom severity at follow-up in stimulant users was predicted by baseline learning rate for losses (positive relationship), and also by information insensitivity and learning rate for wins (negative relationships); although we note that these relationships did not sur
	Despite SUDs showing slower learning from losses (and some evidence for faster learning from wins in frequentist analyses) at the group level, stimulant users with the slowest learning rates from losses (and fastest learning rates from wins) had better outcomes at follow-up. Also, despite (numerically) greater insensitivity to information in SUDs at the group level, both stimulant and opioid users with the greatest insensitivity also had lower symptoms at follow-up. One might speculate that, upon initiating
	Verdejo-Garcia et al., 2018
	Verdejo-Garcia, Garcia-Fernandez, & Dom, 2019

	Although representative of the population (and therefore potentially more informative in real-world clinical settings), one limitation of this study is the heterogeneity of our SUD group. Several secondary analyses in our baseline study addressed some related concerns, but they nonetheless constrain interpretability here. For example, the predictive relationships we found separately in stimulant and opioid users suggest that other SUDs (e.g., cannabis, sedatives) may have had confounding effects; but sample
	In summary, we found that individuals with SUDs showed stable reductions in learning from losses relative to HCs over a 1-year period. Individual-level parameter stability was poor-to-moderate, and in some cases appeared to be attenuated by symptom changes. Finally, multiple model parameters at baseline showed potential predictive utility with respect to symptom changes over time. These results hold promise in the development of adjunct computational assessment tools for predicting symptom evolution and per
	SOFTWARE NOTE
	All model simulations, model comparison, and parametric empirical Bayes analyses were implemented using standard routines (spm_MDP_VB_X.m, spm_BMS.m, spm_dcm_peb.m, spm_dcm_peb_bmc.m) that are available as MATLAB code in the latest version of SPM academic software: . For the specific code used to build the three-armed bandit task model and fit parameters to data, see: .
	http://www.fil.ion.ucl.ac.uk/spm/
	https://github.com/rssmith33/3-armed_
	bandit_task_model
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	Table 1 Descriptive Statistics (Means and Standard Deviations) for Demographic and Clinical Measures by Group and Session.
	Table 1 Descriptive Statistics (Means and Standard Deviations) for Demographic and Clinical Measures by Group and Session.
	* Defined as >3650 lifetime cigarettes. DAST = Drug Abuse Screening Test. PHQ = Patient Health Questionnaire. OASIS = Overall Anxiety Severity and Impairment Scale. WRAT = Wide Range Achievement Test. Significant effects are bolded.
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE


	 
	 
	 

	TOTAL
	TOTAL

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	131
	131
	131

	48
	48

	83
	83

	48
	48

	83
	83


	Age
	Age
	Age

	34.17 (10.18)
	34.17 (10.18)

	32.19 (11.19)
	32.19 (11.19)

	35.32 (9.46)
	35.32 (9.46)

	N/A
	N/A

	N/A
	N/A

	HC: 48 SUD+: 83Total: 131
	HC: 48 SUD+: 83Total: 131
	 
	 


	t(129) = –1.7p = 0.09d = –0.3
	t(129) = –1.7p = 0.09d = –0.3
	 
	 


	N/A
	N/A

	N/A
	N/A


	Sex (Male)
	Sex (Male)
	Sex (Male)

	114 (44%)
	114 (44%)

	22 (46%)
	22 (46%)

	35 (42%)
	35 (42%)

	N/A
	N/A

	N/A
	N/A

	HC: 48 SUD+: 83Total: 131
	HC: 48 SUD+: 83Total: 131
	 
	 


	χ2(1) = 0.17p = 0.68
	χ2(1) = 0.17p = 0.68
	 


	N/A
	N/A

	N/A
	N/A


	DAST
	DAST
	DAST

	3.48 (3.72)
	3.48 (3.72)

	0.12 (0.39)
	0.12 (0.39)

	7.55 (2.17)
	7.55 (2.17)

	0.45 (0.55)
	0.45 (0.55)

	2.72 (3.01)
	2.72 (3.01)

	HC: 38 SUD+: 81Total: 119
	HC: 38 SUD+: 81Total: 119
	 
	 


	F(1, 117) = 193.62p < 0.001η2 = 0.62
	F(1, 117) = 193.62p < 0.001η2 = 0.62
	 
	 


	F(1, 117) = 177.72p < 0.001η2 = 0.6
	F(1, 117) = 177.72p < 0.001η2 = 0.6
	 
	 


	F(1, 117) = 102.46p < 0.001η2 = 0.47
	F(1, 117) = 102.46p < 0.001η2 = 0.47
	 
	 



	PHQ
	PHQ
	PHQ

	3.67 (5.1)
	3.67 (5.1)

	0.88 (1.33)
	0.88 (1.33)

	6.84 (6.11)
	6.84 (6.11)

	1.08 (1.81)
	1.08 (1.81)

	3.35 (4.69)
	3.35 (4.69)

	HC: 38 SUD+: 80Total: 118
	HC: 38 SUD+: 80Total: 118
	 
	 


	F(1, 116) = 30.51p < 0.001η2 = 0.21
	F(1, 116) = 30.51p < 0.001η2 = 0.21
	 
	 


	F(1, 116) = 25.15p < 0.001η2 = 0.18
	F(1, 116) = 25.15p < 0.001η2 = 0.18
	 
	 


	F(1, 116) = 16.44p < 0.001η2 = 0.12
	F(1, 116) = 16.44p < 0.001η2 = 0.12
	 
	 



	OASIS
	OASIS
	OASIS

	3.7 (4.35)
	3.7 (4.35)

	1.48 (2.01)
	1.48 (2.01)

	5.99 (4.74)
	5.99 (4.74)

	1.39 (2.27)
	1.39 (2.27)

	3.74 (4.49)
	3.74 (4.49)

	HC: 38 SUD+: 81Total: 119
	HC: 38 SUD+: 81Total: 119
	 
	 


	F(1, 117) = 27.47p < 0.001η2 = 0.19
	F(1, 117) = 27.47p < 0.001η2 = 0.19
	 
	 


	F(1, 117) = 177.72p < 0.001η2 = 0.6
	F(1, 117) = 177.72p < 0.001η2 = 0.6
	 
	 


	F(1, 117) = 8.82p = 0.004η2 = 0.07
	F(1, 117) = 8.82p = 0.004η2 = 0.07
	 
	 



	WRAT
	WRAT
	WRAT

	60.42 (6.26)
	60.42 (6.26)

	63.78 (4.61)
	63.78 (4.61)

	58.45 (6.31)
	58.45 (6.31)

	N/A
	N/A

	N/A
	N/A

	HC: 45 SUD+: 77Total: 122
	HC: 45 SUD+: 77Total: 122
	 
	 


	t(120) = 4.94p < 0.001d = 0.9
	t(120) = 4.94p < 0.001d = 0.9
	 
	 


	N/A
	N/A

	N/A
	N/A


	Regular Nicotine Smoker*
	Regular Nicotine Smoker*
	Regular Nicotine Smoker*

	68 (26%)
	68 (26%)

	7 (15%)
	7 (15%)

	27 (33%)
	27 (33%)

	N/A
	N/A

	N/A
	N/A

	HC: 46 SUD+: 47Total: 93
	HC: 46 SUD+: 47Total: 93
	 
	 


	χ2(1) = 17.87p < 0.001
	χ2(1) = 17.87p < 0.001
	 


	N/A
	N/A

	N/A
	N/A


	PROPENSITY-MATCHED
	PROPENSITY-MATCHED
	PROPENSITY-MATCHED


	 
	 
	 

	TOTAL
	TOTAL

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	70
	70
	70

	45
	45

	25
	25

	45
	45

	25
	25


	Age
	Age
	Age

	32.4 (10.37)
	32.4 (10.37)

	32.27 (11.25)
	32.27 (11.25)

	32.65 (8.91)
	32.65 (8.91)

	N/A
	N/A

	N/A
	N/A

	HC: 45 SUD+: 25Total: 70
	HC: 45 SUD+: 25Total: 70
	 
	 


	t(68) = –0.14p = 0.89d = –0.04
	t(68) = –0.14p = 0.89d = –0.04
	 
	 


	N/A
	N/A

	N/A
	N/A


	Sex (Male)
	Sex (Male)
	Sex (Male)

	68 (49%)
	68 (49%)

	21 (47%)
	21 (47%)

	13 (52%)
	13 (52%)

	N/A
	N/A

	N/A
	N/A

	HC: 45 SUD+: 25Total: 70
	HC: 45 SUD+: 25Total: 70
	 
	 


	χ2(1) = 0.18p = 0.67
	χ2(1) = 0.18p = 0.67
	 


	N/A
	N/A

	N/A
	N/A


	DAST
	DAST
	DAST

	2.31 (3.4)
	2.31 (3.4)

	0.13 (0.4)
	0.13 (0.4)

	7.6 (2.36)
	7.6 (2.36)

	0.45 (0.55)
	0.45 (0.55)

	3.76 (3.37)
	3.76 (3.37)

	HC: 38 SUD+: 25Total: 63
	HC: 38 SUD+: 25Total: 63
	 
	 


	F(1, 61) = 186.8p < 0.001η2 = 0.75
	F(1, 61) = 186.8p < 0.001η2 = 0.75
	 
	 


	F(1, 61) = 24.9p < 0.001η2 = 0.29
	F(1, 61) = 24.9p < 0.001η2 = 0.29
	 
	 


	F(1, 61) = 60.05p < 0.001η2 = 0.5
	F(1, 61) = 60.05p < 0.001η2 = 0.5
	 
	 



	PHQ
	PHQ
	PHQ

	2.74 (4)
	2.74 (4)

	0.87 (1.36)
	0.87 (1.36)

	7.68 (5.15)
	7.68 (5.15)

	1.08 (1.81)
	1.08 (1.81)

	3.72 (3.96)
	3.72 (3.96)

	HC: 38 SUD+: 25Total: 63
	HC: 38 SUD+: 25Total: 63
	 
	 


	F(1, 61) = 63.99p < 0.001η2 = 0.51
	F(1, 61) = 63.99p < 0.001η2 = 0.51
	 
	 


	F(1, 61) = 6.59p = 0.01η2 = 0.1
	F(1, 61) = 6.59p = 0.01η2 = 0.1
	 
	 


	F(1, 61) = 16.84p < 0.001η2 = 0.22
	F(1, 61) = 16.84p < 0.001η2 = 0.22
	 
	 



	OASIS
	OASIS
	OASIS

	3.01 (3.8)
	3.01 (3.8)

	1.44 (1.99)
	1.44 (1.99)

	6.72 (4.46)
	6.72 (4.46)

	1.39 (2.27)
	1.39 (2.27)

	4.56 (4.33)
	4.56 (4.33)

	HC: 38 SUD+: 25Total: 63
	HC: 38 SUD+: 25Total: 63
	 
	 


	F(1, 61) = 40.52p < 0.001η2 = 0.4
	F(1, 61) = 40.52p < 0.001η2 = 0.4
	 
	 


	F(1, 61) = 2.69p = 0.11η2 = 0.04
	F(1, 61) = 2.69p = 0.11η2 = 0.04
	 
	 


	F(1, 61) = 5.59p = 0.02η2 = 0.08
	F(1, 61) = 5.59p = 0.02η2 = 0.08
	 
	 



	WRAT
	WRAT
	WRAT

	63.29 (4.83)
	63.29 (4.83)

	63.78 (4.61)
	63.78 (4.61)

	62.4 (5.22)
	62.4 (5.22)

	N/A
	N/A

	N/A
	N/A

	HC: 45 SUD+: 25Total: 70
	HC: 45 SUD+: 25Total: 70
	 
	 


	t(68) = 1.14p = 0.26d = 0.28
	t(68) = 1.14p = 0.26d = 0.28
	 
	 


	N/A
	N/A

	N/A
	N/A


	Regular Nicotine Smoker*
	Regular Nicotine Smoker*
	Regular Nicotine Smoker*

	32 (23%)
	32 (23%)

	7 (16%)
	7 (16%)

	9 (36%)
	9 (36%)

	N/A
	N/A

	N/A
	N/A

	HC: 44 SUD+: 17Total: 61
	HC: 44 SUD+: 17Total: 61
	 
	 


	χ2(1) = 8.69p = 0.003
	χ2(1) = 8.69p = 0.003
	 


	N/A
	N/A

	N/A
	N/A





	 
	 
	 
	 
	 
	 

	FULL DATASET
	FULL DATASET

	PROPENSITY-MATCHED
	PROPENSITY-MATCHED


	BASELINE (N = 147)
	BASELINE (N = 147)
	BASELINE (N = 147)
	 


	FOLLOW-UP (N = 83)
	FOLLOW-UP (N = 83)
	 


	ANALYSIS
	ANALYSIS

	BASELINE (N = 49)
	BASELINE (N = 49)
	 


	FOLLOW-UP (N = 25)
	FOLLOW-UP (N = 25)
	 


	ANALYSIS
	ANALYSIS


	Substance Use Disorders
	Substance Use Disorders
	Substance Use Disorders


	Alcohol
	Alcohol
	Alcohol

	55 (37%)
	55 (37%)

	30 (36%)
	30 (36%)

	χ2(1) = 0.04p = 0.85
	χ2(1) = 0.04p = 0.85
	 


	20 (41%)
	20 (41%)

	10 (40%)
	10 (40%)

	χ2(1) = 0p = 0.95
	χ2(1) = 0p = 0.95
	 



	Cannabis
	Cannabis
	Cannabis

	55 (37%)
	55 (37%)

	23 (28%)
	23 (28%)

	χ2(1) = 2.23p = 0.14
	χ2(1) = 2.23p = 0.14
	 


	17 (35%)
	17 (35%)

	5 (20%)
	5 (20%)

	χ2(1) = 1.71p = 0.19
	χ2(1) = 1.71p = 0.19
	 



	Stimulants
	Stimulants
	Stimulants

	104 (71%)
	104 (71%)

	61 (73%)
	61 (73%)

	χ2(1) = 0.2p = 0.66
	χ2(1) = 0.2p = 0.66
	 


	35 (71%)
	35 (71%)

	18 (72%)
	18 (72%)

	χ2(1) = 0p = 0.96
	χ2(1) = 0p = 0.96
	 



	Opioids
	Opioids
	Opioids

	56 (38%)
	56 (38%)

	30 (36%)
	30 (36%)

	χ2(1) = 0.09p = 0.77
	χ2(1) = 0.09p = 0.77
	 


	25 (51%)
	25 (51%)

	14 (56%)
	14 (56%)

	χ2(1) = 0.16p = 0.68
	χ2(1) = 0.16p = 0.68
	 



	Sedatives
	Sedatives
	Sedatives

	38 (26%)
	38 (26%)

	21 (25%)
	21 (25%)

	χ2(1) = 0.01p = 0.93
	χ2(1) = 0.01p = 0.93
	 


	14 (29%)
	14 (29%)

	9 (36%)
	9 (36%)

	χ2(1) = 0.43p = 0.51
	χ2(1) = 0.43p = 0.51
	 



	Hallucinogens
	Hallucinogens
	Hallucinogens

	5 (3%)
	5 (3%)

	3 (4%)
	3 (4%)

	χ2(1) = 0.01p = 0.93
	χ2(1) = 0.01p = 0.93
	 


	2 (4%)
	2 (4%)

	2 (8%)
	2 (8%)

	χ2(1) = 0.5p = 0.48
	χ2(1) = 0.5p = 0.48
	 



	2+ Disorders
	2+ Disorders
	2+ Disorders

	94 (64%)
	94 (64%)

	51 (61%)
	51 (61%)

	χ2(1) = 0.14p = 0.71
	χ2(1) = 0.14p = 0.71
	 


	34 (69%)
	34 (69%)

	18 (72%)
	18 (72%)

	χ2(1) = 0.05p = 0.82
	χ2(1) = 0.05p = 0.82
	 



	Alcohol Only
	Alcohol Only
	Alcohol Only

	9 (6%)
	9 (6%)

	6 (7%)
	6 (7%)

	χ2(1) = 0.11p = 0.74
	χ2(1) = 0.11p = 0.74
	 


	3 (6%)
	3 (6%)

	2 (8%)
	2 (8%)

	χ2(1) = 0.09p = 0.76
	χ2(1) = 0.09p = 0.76
	 



	Cannabis Only
	Cannabis Only
	Cannabis Only

	9 (6%)
	9 (6%)

	4 (5%)
	4 (5%)

	χ2(1) = 0.17p = 0.68
	χ2(1) = 0.17p = 0.68
	 


	4 (8%)
	4 (8%)

	2 (8%)
	2 (8%)

	χ2(1) = 0p = 0.98
	χ2(1) = 0p = 0.98
	 



	Stimulants Only
	Stimulants Only
	Stimulants Only

	26 (18%)
	26 (18%)

	17 (20%)
	17 (20%)

	χ2(1) = 0.27p = 0.6
	χ2(1) = 0.27p = 0.6
	 


	6 (12%)
	6 (12%)

	3 (12%)
	3 (12%)

	χ2(1) = 0p = 0.98
	χ2(1) = 0p = 0.98
	 



	Opioids Only
	Opioids Only
	Opioids Only

	8 (5%)
	8 (5%)

	5 (6%)
	5 (6%)

	χ2(1) = 0.03p = 0.85
	χ2(1) = 0.03p = 0.85
	 


	2 (4%)
	2 (4%)

	0 (0%)
	0 (0%)

	χ2(1) = 1.05p = 0.31
	χ2(1) = 1.05p = 0.31
	 



	Sedatives Only
	Sedatives Only
	Sedatives Only

	0 (0%)
	0 (0%)

	0 (0%)
	0 (0%)

	NA
	NA

	0 (0%)
	0 (0%)

	0 (0%)
	0 (0%)

	NA
	NA


	Mood, Anxiety, Stress Disorders
	Mood, Anxiety, Stress Disorders
	Mood, Anxiety, Stress Disorders


	Major Depressive
	Major Depressive
	Major Depressive

	78 (53%)
	78 (53%)

	43 (52%)
	43 (52%)

	χ2(1) = 0.03p = 0.85
	χ2(1) = 0.03p = 0.85
	 


	30 (61%)
	30 (61%)

	15 (60%)
	15 (60%)

	χ2(1) = 0.01p = 0.92
	χ2(1) = 0.01p = 0.92
	 



	Generalized Anxiety
	Generalized Anxiety
	Generalized Anxiety

	22 (15%)
	22 (15%)

	14 (17%)
	14 (17%)

	χ2(1) = 0.15p = 0.7
	χ2(1) = 0.15p = 0.7
	 


	9 (18%)
	9 (18%)

	7 (28%)
	7 (28%)

	χ2(1) = 0.91p = 0.34
	χ2(1) = 0.91p = 0.34
	 



	Social Anxiety
	Social Anxiety
	Social Anxiety

	19 (13%)
	19 (13%)

	11 (13%)
	11 (13%)

	χ2(1) = 0.01p = 0.94
	χ2(1) = 0.01p = 0.94
	 


	8 (16%)
	8 (16%)

	3 (12%)
	3 (12%)

	χ2(1) = 0.24p = 0.62
	χ2(1) = 0.24p = 0.62
	 



	Panic
	Panic
	Panic

	17 (12%)
	17 (12%)

	10 (12%)
	10 (12%)

	χ2(1) = 0.01p = 0.91
	χ2(1) = 0.01p = 0.91
	 


	7 (14%)
	7 (14%)

	3 (12%)
	3 (12%)

	χ2(1) = 0.07p = 0.79
	χ2(1) = 0.07p = 0.79
	 



	Post-Traumatic Stress
	Post-Traumatic Stress
	Post-Traumatic Stress

	23 (16%)
	23 (16%)

	14 (17%)
	14 (17%)

	χ2(1) = 0.06p = 0.81
	χ2(1) = 0.06p = 0.81
	 


	10 (20%)
	10 (20%)

	5 (20%)
	5 (20%)

	χ2(1) = 0p = 0.97
	χ2(1) = 0p = 0.97
	 



	2+ Disorders
	2+ Disorders
	2+ Disorders

	46 (31%)
	46 (31%)

	30 (36%)
	30 (36%)

	χ2(1) = 0.56p = 0.45
	χ2(1) = 0.56p = 0.45
	 


	18 (37%)
	18 (37%)

	10 (40%)
	10 (40%)

	χ2(1) = 0.08p = 0.78
	χ2(1) = 0.08p = 0.78
	 






	Table 2 Lifetime DSM-IV/DSM-5 psychiatric disorders within SUDs.
	Table 2 Lifetime DSM-IV/DSM-5 psychiatric disorders within SUDs.
	Note: Stimulants = amphetamine, methamphetamine, and/or cocaine.

	Figure 1 Upper left: Illustration of the three-armed bandit task interface. In each of 20 games, participants had 16 opportunities (trials) to choose between one of three options with unknown (but stable) probabilities of winning vs. not winning a point (corresponding to the appearance of a green vs. red circle above the chosen option). Throughout the task, the interface displayed the game number, trial number, total points earned, and history of wins/losses for each choice within the current game (number o
	Figure 1 Upper left: Illustration of the three-armed bandit task interface. In each of 20 games, participants had 16 opportunities (trials) to choose between one of three options with unknown (but stable) probabilities of winning vs. not winning a point (corresponding to the appearance of a green vs. red circle above the chosen option). Throughout the task, the interface displayed the game number, trial number, total points earned, and history of wins/losses for each choice within the current game (number o
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	MODEL ELEMENT
	MODEL ELEMENT
	MODEL ELEMENT
	MODEL ELEMENT
	MODEL ELEMENT
	MODEL ELEMENT

	GENERAL DESCRIPTION
	GENERAL DESCRIPTION

	MODEL SPECIFICATION
	MODEL SPECIFICATION


	mto
	mto
	mto
	mto


	One vector per modality (m) of possible observations. Each vector contains entries corresponding to possible observable stimuli for that category at time t.
	One vector per modality (m) of possible observations. Each vector contains entries corresponding to possible observable stimuli for that category at time t.

	Possible observations for reward (modality 1):
	Possible observations for reward (modality 1):
	1. Start
	2. Reward
	3. No reward
	Possible observations for choice (modality 2):
	1. Start
	2. Choice 1
	3. Choice 2
	4. Choice 3


	s
	s
	s
	t


	A vector containing entries corresponding to the probability of each possible state that could be occupied at time t.
	A vector containing entries corresponding to the probability of each possible state that could be occupied at time t.

	Possible choice states:
	Possible choice states:
	1. Start
	2. Choice 1
	3. Choice 2
	4. Choice 3


	A
	A
	A
	(|)mttpos
	(|)mttpos


	A matrix encoding the relationship between states and observations (one matrix per outcome modality).
	A matrix encoding the relationship between states and observations (one matrix per outcome modality).

	1. A reward probability matrix: 
	1. A reward probability matrix: 
	 p(o|s)
	reward
	choice

	2.  An identity matrix for observed choice (entailing that participants had no uncertainty about the choice they made): 
	 p(o|s)
	choice
	choice



	a
	a
	a
	(|)mttpos
	(|)mttpos


	Dirichlet priors associated with the A matrix that specify beliefs about the mapping from states to observations. Learning corresponds to updating the concentration parameters for these priors after each observation, where the magnitude of the updates is controlled by a learning rate parameter η (see Supplementary Materials and Figure 1).
	Dirichlet priors associated with the A matrix that specify beliefs about the mapping from states to observations. Learning corresponds to updating the concentration parameters for these priors after each observation, where the magnitude of the updates is controlled by a learning rate parameter η (see Supplementary Materials and Figure 1).

	Each entry for learnable reward probabilities began with a uniform concentration parameter value of magnitude a, and was updated after each observed win or loss on the task. The learning rate η and a (which can be understood as a measure of sensitivity to new information; see Supplementary Materials) were fit to participant behavior.
	Each entry for learnable reward probabilities began with a uniform concentration parameter value of magnitude a, and was updated after each observed win or loss on the task. The learning rate η and a (which can be understood as a measure of sensitivity to new information; see Supplementary Materials) were fit to participant behavior.
	0
	0



	B
	B
	B
	p(s|s,π)
	t+1
	t


	A set of matrices encoding the probability of transitioning from one state to another given the choice of policy (π). Here policies simply include the choice of each bandit.
	A set of matrices encoding the probability of transitioning from one state to another given the choice of policy (π). Here policies simply include the choice of each bandit.

	Transition probabilities were deterministic mappings based on a participant’s choices such that, for example, p(s |s,π) = 1, and 0 for all other transitions, and so forth for the other possible choices.
	Transition probabilities were deterministic mappings based on a participant’s choices such that, for example, p(s |s,π) = 1, and 0 for all other transitions, and so forth for the other possible choices.
	choice
	1
	start
	option
	 1



	C
	C
	C
	p(o)
	t


	One vector per observation modality (per time point) encoding the preference (subjective reward value) of each possible observation within that modality. This vector is passed through a softmax function and then log-transformed.
	One vector per observation modality (per time point) encoding the preference (subjective reward value) of each possible observation within that modality. This vector is passed through a softmax function and then log-transformed.

	The value of observing a win was a model parameter c reflecting subjective reward value (reward sensitivity); the value of all other observations was set to 0. The value of c was fit to participant behavior. Crucially, higher c values have the effect of reducing goal-directed exploration, as the probability of each choice (based on expected free energy G) becomes more driven by reward than by information-seeking (see Supplementary Materials and Figure 1).
	The value of observing a win was a model parameter c reflecting subjective reward value (reward sensitivity); the value of all other observations was set to 0. The value of c was fit to participant behavior. Crucially, higher c values have the effect of reducing goal-directed exploration, as the probability of each choice (based on expected free energy G) becomes more driven by reward than by information-seeking (see Supplementary Materials and Figure 1).
	r
	r
	r
	π



	D
	D
	D
	p(s)
	t
	=1


	A vector encoding prior probabilities over states.
	A vector encoding prior probabilities over states.

	This encoded a probability of 1 that the participant began in the start state.
	This encoded a probability of 1 that the participant began in the start state.


	π
	π
	π

	A vector encoding the probability of selecting each allowable policy (one entry per policy). The value of each policy is determined by its expected free energy (G), which depends on a combination of expected reward and expected information gain. Actions at each time point are chosen based on sampling from the distribution over policies, π = σ (–G); the determinacy of action selection is modulated by an inverse temperature or action precision parameter α (see Supplementary Materials and Figure 1).
	A vector encoding the probability of selecting each allowable policy (one entry per policy). The value of each policy is determined by its expected free energy (G), which depends on a combination of expected reward and expected information gain. Actions at each time point are chosen based on sampling from the distribution over policies, π = σ (–G); the determinacy of action selection is modulated by an inverse temperature or action precision parameter α (see Supplementary Materials and Figure 1).
	π


	This included 3 allowable policies, corresponding to the choice of transitioning to each of the three choice states. The action precision parameter α was fit to participant behavior.
	This included 3 allowable policies, corresponding to the choice of transitioning to each of the three choice states. The action precision parameter α was fit to participant behavior.





	Table 3 Computational model description.
	Table 3 Computational model description.

	PARAMETER:
	PARAMETER:
	PARAMETER:
	PARAMETER:
	PARAMETER:
	PARAMETER:

	a
	a
	(ACTION PRECISION)

	c
	c
	r

	(REWARD SENSITIVITY)

	η
	η
	(LEARNING RATE)

	a
	a
	0

	(INSENSITIVITY TO INFORMATION)


	Default value if not estimated
	Default value if not estimated
	Default value if not estimated

	4
	4

	 (always estimated)
	 (always estimated)

	(removed from model)
	(removed from model)

	0.25
	0.25


	Prior means during estimation*
	Prior means during estimation*
	Prior means during estimation*

	4
	4

	4
	4

	0.5
	0.5

	0.25
	0.25


	Model 1
	Model 1
	Model 1

	Y
	Y

	Y
	Y

	N
	N

	N
	N


	Model 2
	Model 2
	Model 2

	Y
	Y

	Y
	Y

	Y
	Y

	N
	N


	Model 3
	Model 3
	Model 3

	Y
	Y

	Y
	Y

	Y
	Y

	Y
	Y


	Model 4
	Model 4
	Model 4

	N
	N

	Y
	Y

	Y
	Y

	Y
	Y


	Model 5
	Model 5
	Model 5

	N
	N

	Y
	Y

	Y
	Y

	N
	N


	Model 6
	Model 6
	Model 6

	N
	N

	Y
	Y

	N
	N

	N
	N


	Model 7
	Model 7
	Model 7

	N
	N

	Y
	Y

	N
	N

	Y
	Y


	Model 8
	Model 8
	Model 8

	Y
	Y

	Y
	Y

	N
	N

	Y
	Y


	Model 9**
	Model 9**
	Model 9**

	Y
	Y

	Y
	Y

	Wins/Losses
	Wins/Losses

	Y
	Y


	Model 10
	Model 10
	Model 10

	Y
	Y

	Y
	Y

	Wins/Losses
	Wins/Losses

	N
	N





	Table 4 Nested models.
	Table 4 Nested models.
	Y indicates that a parameter was estimated for that model; N indicates that a parameter was not estimated for that model. 
	* Prior variance for all parameters was set to a precise value of 2 in order to deter over-fitting. 
	–2

	** Winning model.

	Table 5 Model Parameters by Group and Session (Means and Standard Deviations) as well as Results of Linear Mixed Effects Model Analyses.
	Table 5 Model Parameters by Group and Session (Means and Standard Deviations) as well as Results of Linear Mixed Effects Model Analyses.
	* Analyses are reported using results from LMEs accounting for age, sex, and premorbid IQ (WRAT). Significant effects are bolded.
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE


	 
	 
	 

	TOTAL
	TOTAL
	 

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	131
	131
	131

	48
	48

	83
	83

	48
	48

	83
	83


	Action Precision
	Action Precision
	Action Precision

	2.44 (0.83)
	2.44 (0.83)

	2.57 (0.92)
	2.57 (0.92)

	2.2 (0.58)
	2.2 (0.58)

	2.71 (0.95)
	2.71 (0.95)

	2.44 (0.86)
	2.44 (0.86)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 4.52p = 0.04η2 = 0.04
	F(1, 117) = 4.52p = 0.04η2 = 0.04
	 
	 


	F(1, 120) = 4.41p = 0.04η2 = 0.04
	F(1, 120) = 4.41p = 0.04η2 = 0.04
	 
	 


	F(1, 120) = 0.67p = 0.41η2 = 0.01
	F(1, 120) = 0.67p = 0.41η2 = 0.01
	 
	 



	Reward Sensitivity
	Reward Sensitivity
	Reward Sensitivity

	4.45 (1.49)
	4.45 (1.49)

	4.3 (1.47)
	4.3 (1.47)

	4.25 (1.5)
	4.25 (1.5)

	4.5 (1.45)
	4.5 (1.45)

	4.71 (1.49)
	4.71 (1.49)

	HC: 45SUD +: 77Total: 122
	HC: 45SUD +: 77Total: 122
	 
	 


	F(1, 117) = 0.98p = 0.32η2 = 0.01
	F(1, 117) = 0.98p = 0.32η2 = 0.01
	 
	 


	F(1, 120) = 12.74p < 0.001η2 = 0.1
	F(1, 120) = 12.74p < 0.001η2 = 0.1
	 
	 


	F(1, 120) = 1.04p = 0.31η2 = 0.01
	F(1, 120) = 1.04p = 0.31η2 = 0.01
	 
	 



	Learning Rate (Wins)
	Learning Rate (Wins)
	Learning Rate (Wins)

	0.5 (0.13)
	0.5 (0.13)

	0.47 (0.12)
	0.47 (0.12)

	0.5 (0.13)
	0.5 (0.13)

	0.49 (0.13)
	0.49 (0.13)

	0.51 (0.15)
	0.51 (0.15)

	HC: 45SUD +: 77Total: 122
	HC: 45SUD +: 77Total: 122
	 
	 


	F(1, 117) = 5.41p = 0.02η2 = 0.04
	F(1, 117) = 5.41p = 0.02η2 = 0.04
	 
	 


	F(1, 120) = 3.86p = 0.05η2 = 0.03
	F(1, 120) = 3.86p = 0.05η2 = 0.03
	 
	 


	F(1, 120) = 0.01p = 0.93η2 = 0
	F(1, 120) = 0.01p = 0.93η2 = 0
	 
	 



	Learning Rate (Losses)
	Learning Rate (Losses)
	Learning Rate (Losses)

	0.38 (0.15)
	0.38 (0.15)

	0.43 (0.13)
	0.43 (0.13)

	0.39 (0.15)
	0.39 (0.15)

	0.39 (0.15)
	0.39 (0.15)

	0.35 (0.16)
	0.35 (0.16)

	HC: 45SUD +: 77Total: 122
	HC: 45SUD +: 77Total: 122
	 
	 


	F(1, 117) = 6.45p = 0.01η2 = 0.05
	F(1, 117) = 6.45p = 0.01η2 = 0.05
	 
	 


	F(1, 120) = 8.68p = 0.004η2 = 0.07
	F(1, 120) = 8.68p = 0.004η2 = 0.07
	 
	 


	F(1, 120) = 0.14p = 0.7η2 = 0
	F(1, 120) = 0.14p = 0.7η2 = 0
	 
	 



	Information Insensitivity
	Information Insensitivity
	Information Insensitivity

	0.78 (0.28)
	0.78 (0.28)

	0.72 (0.27)
	0.72 (0.27)

	0.79 (0.29)
	0.79 (0.29)

	0.76 (0.31)
	0.76 (0.31)

	0.82 (0.25)
	0.82 (0.25)

	HC: 45SUD +: 77Total: 122
	HC: 45SUD +: 77Total: 122
	 
	 


	F(1, 117) = 3.63p = 0.06η2 = 0.03
	F(1, 117) = 3.63p = 0.06η2 = 0.03
	 
	 


	F(1, 120) = 1.54p = 0.22η2 = 0.01
	F(1, 120) = 1.54p = 0.22η2 = 0.01
	 
	 


	F(1, 120) = 0.27p = 0.6η2 = 0
	F(1, 120) = 0.27p = 0.6η2 = 0
	 
	 



	PROPENSITY MATCHED
	PROPENSITY MATCHED
	PROPENSITY MATCHED


	 
	 
	 

	TOTAL
	TOTAL

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	70
	70
	70

	45
	45

	25
	25

	45
	45

	25
	25


	Action Precision
	Action Precision
	Action Precision

	2.51 (0.89)
	2.51 (0.89)

	2.59 (0.94)
	2.59 (0.94)

	2.12 (0.58)
	2.12 (0.58)

	2.67 (0.94)
	2.67 (0.94)

	2.51 (0.9)
	2.51 (0.9)

	HC: 45SUD +: 25Total: 70
	HC: 45SUD +: 25Total: 70
	 
	 


	F(1, 65) = 2.43p = 0.12η2 = 0.04
	F(1, 65) = 2.43p = 0.12η2 = 0.04
	 
	 


	F(1, 68) = 2.86p = 0.1η2 = 0.04
	F(1, 68) = 2.86p = 0.1η2 = 0.04
	 
	 


	F(1, 68) = 1.63p = 0.21η2 = 0.02
	F(1, 68) = 1.63p = 0.21η2 = 0.02
	 
	 



	Reward Sensitivity
	Reward Sensitivity
	Reward Sensitivity

	4.4 (1.51)
	4.4 (1.51)

	4.23 (1.47)
	4.23 (1.47)

	4.17 (1.63)
	4.17 (1.63)

	4.51 (1.49)
	4.51 (1.49)

	4.72 (1.52)
	4.72 (1.52)

	HC: 45SUD +: 25Total: 70
	HC: 45SUD +: 25Total: 70
	 
	 


	F(1, 65) = 0.02p = 0.88η2 = 0
	F(1, 65) = 0.02p = 0.88η2 = 0
	 
	 


	F(1, 68) = 4.84p = 0.03η2 = 0.07
	F(1, 68) = 4.84p = 0.03η2 = 0.07
	 
	 


	F(1, 68) = 0.59p = 0.45η2 = 0.01
	F(1, 68) = 0.59p = 0.45η2 = 0.01
	 
	 



	Learning Rate (Wins)
	Learning Rate (Wins)
	Learning Rate (Wins)

	0.49 (0.13)
	0.49 (0.13)

	0.46 (0.12)
	0.46 (0.12)

	0.53 (0.1)
	0.53 (0.1)

	0.49 (0.13)
	0.49 (0.13)

	0.51 (0.16)
	0.51 (0.16)

	HC: 45SUD +: 25Total: 70
	HC: 45SUD +: 25Total: 70
	 
	 


	F(1, 65) = 2.56p = 0.11η2 = 0.04
	F(1, 65) = 2.56p = 0.11η2 = 0.04
	 
	 


	F(1, 68) = 0.31p = 0.58η2 = 0
	F(1, 68) = 0.31p = 0.58η2 = 0
	 
	 


	F(1, 68) = 1.48p = 0.23η2 = 0.02
	F(1, 68) = 1.48p = 0.23η2 = 0.02
	 
	 



	Learning Rate (Losses)
	Learning Rate (Losses)
	Learning Rate (Losses)

	0.39 (0.15)
	0.39 (0.15)

	0.43 (0.13)
	0.43 (0.13)

	0.35 (0.17)
	0.35 (0.17)

	0.39 (0.14)
	0.39 (0.14)

	0.34 (0.18)
	0.34 (0.18)

	HC: 45SUD +: 25Total: 70
	HC: 45SUD +: 25Total: 70
	 
	 


	F(1, 65) = 4.32p = 0.04η2 = 0.06
	F(1, 65) = 4.32p = 0.04η2 = 0.06
	 
	 


	F(1, 68) = 1.33p = 0.25η2 = 0.02
	F(1, 68) = 1.33p = 0.25η2 = 0.02
	 
	 


	F(1, 68) = 0.65p = 0.42η2 = 0.01
	F(1, 68) = 0.65p = 0.42η2 = 0.01
	 
	 



	Information Insensitivity
	Information Insensitivity
	Information Insensitivity

	0.77 (0.29)
	0.77 (0.29)

	0.73 (0.27)
	0.73 (0.27)

	0.82 (0.33)
	0.82 (0.33)

	0.75 (0.28)
	0.75 (0.28)

	0.86 (0.28)
	0.86 (0.28)

	HC: 45SUD +: 25Total: 70
	HC: 45SUD +: 25Total: 70
	 
	 


	F(1, 65) = 3.23p = 0.08η2 = 0.05
	F(1, 65) = 3.23p = 0.08η2 = 0.05
	 
	 


	F(1, 68) = 0.35p = 0.56η2 = 0.01
	F(1, 68) = 0.35p = 0.56η2 = 0.01
	 
	 


	F(1, 68) = 0.07p = 0.8η2 = 0
	F(1, 68) = 0.07p = 0.8η2 = 0
	 
	 






	Figure 2 Left: Results of parametric empirical Bayes (PEB) analyses, showing the posterior means and variances for group difference estimates in the full and propensity-matched samples in models accounting for age, sex, and premorbid IQ. These Bayesian group comparisons confirm the differences in learning rates for losses seen at baseline. There was also a main effect of time on this learning rate, but no significant interactions between group and time, indicating the group effects were stable. No other par
	Figure 2 Left: Results of parametric empirical Bayes (PEB) analyses, showing the posterior means and variances for group difference estimates in the full and propensity-matched samples in models accounting for age, sex, and premorbid IQ. These Bayesian group comparisons confirm the differences in learning rates for losses seen at baseline. There was also a main effect of time on this learning rate, but no significant interactions between group and time, indicating the group effects were stable. No other par

	Story
	_No_paragraph_style_
	Table
	TR
	GROUP
	GROUP

	ICC(3, 1)
	ICC(3, 1)

	p
	p


	Total wins
	Total wins
	Total wins

	All
	All

	.15
	.15

	.05
	.05


	HCs
	HCs
	HCs

	.27
	.27

	.03
	.03


	SUDs
	SUDs
	SUDs

	.08
	.08

	.23
	.23


	a (action precision)
	a (action precision)
	a (action precision)

	All
	All

	.32
	.32

	<.001
	<.001


	HCs
	HCs
	HCs

	.45
	.45

	<.001
	<.001


	SUDs
	SUDs
	SUDs

	.15
	.15

	.09
	.09


	c (reward sensitivity)
	c (reward sensitivity)
	c (reward sensitivity)
	r


	All
	All

	.54
	.54

	<.001
	<.001


	HCs
	HCs
	HCs

	.48
	.48

	<.001
	<.001


	SUDs
	SUDs
	SUDs

	.58
	.58

	<.001
	<.001


	η
	η
	η
	win

	(learning rate for wins)

	All
	All

	.35
	.35

	<.001
	<.001


	HCs
	HCs
	HCs

	.28
	.28

	.03
	.03


	SUDs
	SUDs
	SUDs

	.37
	.37

	<.001
	<.001


	η
	η
	η
	loss

	(learning rate for losses)

	All
	All

	.43
	.43

	<.001
	<.001


	HCs
	HCs
	HCs

	.35
	.35

	.007
	.007


	SUDs
	SUDs
	SUDs

	.45
	.45

	<.001
	<.001


	a
	a
	a
	0

	(insensitivity to information)

	All
	All

	.25
	.25

	.002
	.002


	HCs
	HCs
	HCs

	.24
	.24

	.05
	.05


	SUDs
	SUDs
	SUDs

	.25
	.25

	.01
	.01





	Table 6 Intra-class correlations between baseline and 1-year follow-up (full sample).
	Table 6 Intra-class correlations between baseline and 1-year follow-up (full sample).

	Figure 3 Correlations between computational parameters at baseline and 1-year follow-up.
	Figure 3 Correlations between computational parameters at baseline and 1-year follow-up.

	Figure 4 Top: Negative correlation in stimulant users (full sample) between pre-to-post changes in action precision and pre-to-post changes in symptom severity (DAST). Bottom: Illustration of individual pre-to-post changes in DAST scores and action precision (as well as group mean and SE). As can be seen, DAST scores tend to decrease and action precision tends to increase, but with notable individual differences in each. DAST change scores account for what could already be predicted based on age, sex, and p
	Figure 4 Top: Negative correlation in stimulant users (full sample) between pre-to-post changes in action precision and pre-to-post changes in symptom severity (DAST). Bottom: Illustration of individual pre-to-post changes in DAST scores and action precision (as well as group mean and SE). As can be seen, DAST scores tend to decrease and action precision tends to increase, but with notable individual differences in each. DAST change scores account for what could already be predicted based on age, sex, and p

	Figure 5 Predictive relationships in stimulant users (full sample) between baseline model parameters and symptom severity at 1-year follow-up, after accounting for what could already be predicted based on age, sex, and premorbid IQ. The p-values shown here are uncorrected, but the relationships with learning rates and insensitivity to information survive correction for 6 comparisons (i.e., one per SUD group tested; corrected threshold of p < .0083). No relationship survives a more conservative correction fo
	Figure 5 Predictive relationships in stimulant users (full sample) between baseline model parameters and symptom severity at 1-year follow-up, after accounting for what could already be predicted based on age, sex, and premorbid IQ. The p-values shown here are uncorrected, but the relationships with learning rates and insensitivity to information survive correction for 6 comparisons (i.e., one per SUD group tested; corrected threshold of p < .0083). No relationship survives a more conservative correction fo

	Table 7 Model-Free Task Measures by Group and Session (Means and Standard Deviations).
	Table 7 Model-Free Task Measures by Group and Session (Means and Standard Deviations).
	* Analyses are reported using results from LMEs accounting for age, sex, and premorbid IQ (WRAT). Significant effects are bolded.
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE
	FULL SAMPLE


	 
	 
	 

	TOTAL 
	TOTAL 

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	131
	131
	131

	48
	48

	83
	83

	48
	48

	83
	83


	Wins
	Wins
	Wins

	181.1 (12.71)
	181.1 (12.71)

	182.83 (12.19)
	182.83 (12.19)

	178.75 (12.79)
	178.75 (12.79)

	182.27 (12.14)
	182.27 (12.14)

	181.78 (13.12)
	181.78 (13.12)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 1.97p = 0.16η2 = 0.02
	F(1, 117) = 1.97p = 0.16η2 = 0.02
	 
	 


	F(1, 120) = 1.33p = 0.25η2 = 0.01
	F(1, 120) = 1.33p = 0.25η2 = 0.01
	 
	 


	F(1, 120) = 0.74p = 0.39η2 = 0.01
	F(1, 120) = 0.74p = 0.39η2 = 0.01
	 
	 



	Mean Reaction Time
	Mean Reaction Time
	Mean Reaction Time

	0.56 (0.25)
	0.56 (0.25)

	0.62 (0.24)
	0.62 (0.24)

	0.61 (0.27)
	0.61 (0.27)

	0.53 (0.23)
	0.53 (0.23)

	0.5 (0.22)
	0.5 (0.22)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 3.46p = 0.07η2 = 0.03
	F(1, 117) = 3.46p = 0.07η2 = 0.03
	 
	 


	F(1, 120) = 29.56p < 0.001η2 = 0.2
	F(1, 120) = 29.56p < 0.001η2 = 0.2
	 
	 


	F(1, 120) = 0.6p = 0.44η2 = 0.01
	F(1, 120) = 0.6p = 0.44η2 = 0.01
	 
	 



	Win/Stay
	Win/Stay
	Win/Stay

	134.28 (33.91)
	134.28 (33.91)

	133.5 (32.91)
	133.5 (32.91)

	131.63 (36.63)
	131.63 (36.63)

	131.21 (31.49)
	131.21 (31.49)

	139.17 (33.03)
	139.17 (33.03)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 0.27p = 0.6η2 = 0
	F(1, 117) = 0.27p = 0.6η2 = 0
	 
	 


	F(1, 120) = 2.61p = 0.11η2 = 0.02
	F(1, 120) = 2.61p = 0.11η2 = 0.02
	 
	 


	F(1, 120) = 1.99p = 0.16η2 = 0.02
	F(1, 120) = 1.99p = 0.16η2 = 0.02
	 
	 



	Win/Shift
	Win/Shift
	Win/Shift

	35.08 (28.17)
	35.08 (28.17)

	37.88 (28.11)
	37.88 (28.11)

	35.46 (29.6)
	35.46 (29.6)

	39.06 (25.85)
	39.06 (25.85)

	30.8 (27.94)
	30.8 (27.94)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 1.42p = 0.24η2 = 0.01
	F(1, 117) = 1.42p = 0.24η2 = 0.01
	 
	 


	F(1, 120) = 2.15p = 0.15η2 = 0.02
	F(1, 120) = 2.15p = 0.15η2 = 0.02
	 
	 


	F(1, 120) = 1.24p = 0.27η2 = 0.01
	F(1, 120) = 1.24p = 0.27η2 = 0.01
	 
	 



	Lose/Stay
	Lose/Stay
	Lose/Stay

	47.11 (29.45)
	47.11 (29.45)

	39.33 (25.51)
	39.33 (25.51)

	46.42 (30.11)
	46.42 (30.11)

	45.98 (24.45)
	45.98 (24.45)

	52.96 (32.66)
	52.96 (32.66)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 7.21p = 0.008η2 = 0.06
	F(1, 117) = 7.21p = 0.008η2 = 0.06
	 
	 


	F(1, 120) = 9.16p = 0.003η2 = 0.07
	F(1, 120) = 9.16p = 0.003η2 = 0.07
	 
	 


	F(1, 120) = 0.06p = 0.8η2 = 0
	F(1, 120) = 0.06p = 0.8η2 = 0
	 
	 



	Lose/Shift
	Lose/Shift
	Lose/Shift

	83.52 (30.99)
	83.52 (30.99)

	89.29 (27.39)
	89.29 (27.39)

	86.49 (32.07)
	86.49 (32.07)

	83.75 (27.07)
	83.75 (27.07)

	77.07 (33.27)
	77.07 (33.27)

	HC: 45SUD+: 77Total: 122
	HC: 45SUD+: 77Total: 122
	 
	 


	F(1, 117) = 4.08p = 0.05η2 = 0.03
	F(1, 117) = 4.08p = 0.05η2 = 0.03
	 
	 


	F(1, 120) = 12.7p < 0.001η2 = 0.1
	F(1, 120) = 12.7p < 0.001η2 = 0.1
	 
	 


	F(1, 120) = 0.79p = 0.38η2 = 0.01
	F(1, 120) = 0.79p = 0.38η2 = 0.01
	 
	 



	PROPENSITY-MATCHED
	PROPENSITY-MATCHED
	PROPENSITY-MATCHED


	 
	 
	 

	TOTAL
	TOTAL
	 

	BASELINE
	BASELINE

	FOLLOW-UP
	FOLLOW-UP

	USABLE DATA (N)
	USABLE DATA (N)

	EFFECT OF CLINICAL STATUS
	EFFECT OF CLINICAL STATUS

	EFFECT OF SESSION
	EFFECT OF SESSION

	EFFECT OF CLINICAL STATUS/SESSION INTERACTION
	EFFECT OF CLINICAL STATUS/SESSION INTERACTION


	HCS
	HCS
	HCS

	SUDS
	SUDS

	HCS
	HCS

	SUDS
	SUDS


	70
	70
	70

	45
	45

	25
	25

	45
	45

	25
	25


	Wins
	Wins
	Wins

	180.76 (12.56)
	180.76 (12.56)

	182.4 (12.46)
	182.4 (12.46)

	177.92 (11.15)
	177.92 (11.15)

	182.44 (11.95)
	182.44 (11.95)

	177.64 (14.65)
	177.64 (14.65)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 3.44p = 0.07η2 = 0.05
	F(1, 65) = 3.44p = 0.07η2 = 0.05
	 
	 


	F(1, 68) = 0p = 0.97η2 = 0
	F(1, 68) = 0p = 0.97η2 = 0
	 
	 


	F(1, 68) = 0.01p = 0.93η2 = 0
	F(1, 68) = 0.01p = 0.93η2 = 0
	 
	 



	Mean Reaction Time
	Mean Reaction Time
	Mean Reaction Time

	0.55 (0.23)
	0.55 (0.23)

	0.62 (0.25)
	0.62 (0.25)

	0.57 (0.21)
	0.57 (0.21)

	0.53 (0.23)
	0.53 (0.23)

	0.47 (0.17)
	0.47 (0.17)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 1.87p = 0.18η2 = 0.03
	F(1, 65) = 1.87p = 0.18η2 = 0.03
	 
	 


	F(1, 68) = 14.39p < 0.001η2 = 0.17
	F(1, 68) = 14.39p < 0.001η2 = 0.17
	 
	 


	F(1, 68) = 0.04p = 0.85η2 = 0
	F(1, 68) = 0.04p = 0.85η2 = 0
	 
	 



	Win/Stay
	Win/Stay
	Win/Stay

	132.44 (32.63)
	132.44 (32.63)

	132.96 (33.22)
	132.96 (33.22)

	129.64 (38.41)
	129.64 (38.41)

	132.24 (32.13)
	132.24 (32.13)

	134.68 (27.58)
	134.68 (27.58)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 0p = 0.97η2 = 0
	F(1, 65) = 0p = 0.97η2 = 0
	 
	 


	F(1, 68) = 0.09p = 0.76η2 = 0
	F(1, 68) = 0.09p = 0.76η2 = 0
	 
	 


	F(1, 68) = 0.39p = 0.54η2 = 0.01
	F(1, 68) = 0.39p = 0.54η2 = 0.01
	 
	 



	Win/Shift
	Win/Shift
	Win/Shift

	36.78 (27.93)
	36.78 (27.93)

	38.11 (28.05)
	38.11 (28.05)

	37.04 (33.09)
	37.04 (33.09)

	38.09 (26.38)
	38.09 (26.38)

	31.76 (25.9)
	31.76 (25.9)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 0.46p = 0.5η2 = 0.01
	F(1, 65) = 0.46p = 0.5η2 = 0.01
	 
	 


	F(1, 68) = 0.28p = 0.6η2 = 0
	F(1, 68) = 0.28p = 0.6η2 = 0
	 
	 


	F(1, 68) = 0.49p = 0.49η2 = 0.01
	F(1, 68) = 0.49p = 0.49η2 = 0.01
	 
	 



	Lose/Stay
	Lose/Stay
	Lose/Stay

	46.19 (29.26)
	46.19 (29.26)

	38.31 (25.88)
	38.31 (25.88)

	51 (30.01)
	51 (30.01)

	45.22 (24.7)
	45.22 (24.7)

	57.32 (37.94)
	57.32 (37.94)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 4.56p = 0.04η2 = 0.07
	F(1, 65) = 4.56p = 0.04η2 = 0.07
	 
	 


	F(1, 68) = 3.97p = 0.05η2 = 0.06
	F(1, 68) = 3.97p = 0.05η2 = 0.06
	 
	 


	F(1, 68) = 0.01p = 0.93η2 = 0
	F(1, 68) = 0.01p = 0.93η2 = 0
	 
	 



	Lose/Shift
	Lose/Shift
	Lose/Shift

	84.59 (29.69)
	84.59 (29.69)

	90.62 (27.71)
	90.62 (27.71)

	82.32 (32.22)
	82.32 (32.22)

	84.44 (27.78)
	84.44 (27.78)

	76.24 (33.13)
	76.24 (33.13)

	HC: 45SUD+: 25Total: 70
	HC: 45SUD+: 25Total: 70
	 
	 


	F(1, 65) = 2.04p = 0.16η2 = 0.03
	F(1, 65) = 2.04p = 0.16η2 = 0.03
	 
	 


	F(1, 68) = 3.13p = 0.08η2 = 0.04
	F(1, 68) = 3.13p = 0.08η2 = 0.04
	 
	 


	F(1, 68) = 0p = 0.99η2 = 0
	F(1, 68) = 0p = 0.99η2 = 0
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	(Contd.)
	(Contd.)
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